针对混合储能平抑风电功率波动时储能系统成本过高的问题,提出一种基于卡尔曼滤波和模型预测控制的风电波动平抑控制策略。该方法基于风储联合发电系统,在满足风电平抑需求的基础上,通过预设截止频率以储能容量变化最小与功率波动最低...针对混合储能平抑风电功率波动时储能系统成本过高的问题,提出一种基于卡尔曼滤波和模型预测控制的风电波动平抑控制策略。该方法基于风储联合发电系统,在满足风电平抑需求的基础上,通过预设截止频率以储能容量变化最小与功率波动最低为多目标,利用遗传算法求解卡尔曼滤波自适应参数获得最优储能目标功率。为提高混合储能系统协调运行能力,考虑调节储能荷电状态(state of charge,SOC)通过模型预测控制实现计及电池运行寿命与超级电容SOC变化的动态功率分配。最后,结合实际风电功率数据进行仿真验证。结果表明,所提策略能够有效改善电池SOC、降低超级电容容量,符合储能平抑风电功率需求,能充分考虑两种储能设备的特性差异,提高功率分配的合理性,改善储能系统经济性。展开更多
针对概率数据互联(Probability data association, PDA)算法在杂波环境下计算复杂度高的问题,设计了一种基于PDA算法的数据关联方法,当波门内量测点数量大于阈值时,采用PDA算法更新目标状态;当波门内量测点数量小于等于阈值时,采用最近...针对概率数据互联(Probability data association, PDA)算法在杂波环境下计算复杂度高的问题,设计了一种基于PDA算法的数据关联方法,当波门内量测点数量大于阈值时,采用PDA算法更新目标状态;当波门内量测点数量小于等于阈值时,采用最近邻思想筛选目标量测点,接着利用卡尔曼滤波(Kalman filter, KF)算法实现杂波环境下的快速滤波更新。在此基础上,通过自适应区间平滑方法,动态修正平滑区间,实现整体状态估计的反向平滑,从而提升算法的精度。不同杂波环境下的实验结果表明,本文方法相较于PDA算法与KF-PDA算法,在保证跟踪效率的同时,有效提升了系统状态的估计精度,验证了该方法的鲁棒性和有效性。展开更多
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman f...针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman filter based on adaptive spherical insensitive transformation,ASIT-UKF)算法。该算法通过使用球形不敏变换方式选择权系数以及初始化一元向量对sigma点的产生进行选取。与UKF算法相比,ASIT-UKF算法产生的sigma点减少近50%,使得算法的计算复杂度大大降低。同时,将产生的所有sigma点进行单位球形面上的归一化处理,提高了数值的稳定性。考虑到实际运行中锂电池系统噪声干扰带来的不确定性,加入Sage-Husa自适应滤波器对不确定性噪声的干扰进行实时更新和修正,以达到提高在线锂电池SOC估计精度的目的。最后,将均方根误差和最大绝对误差计算公式引入到性能估计指标中。实验结果表明,ASIT-UKF算法在准确度、鲁棒性和收敛性方面具有优越的性能。展开更多
文摘针对混合储能平抑风电功率波动时储能系统成本过高的问题,提出一种基于卡尔曼滤波和模型预测控制的风电波动平抑控制策略。该方法基于风储联合发电系统,在满足风电平抑需求的基础上,通过预设截止频率以储能容量变化最小与功率波动最低为多目标,利用遗传算法求解卡尔曼滤波自适应参数获得最优储能目标功率。为提高混合储能系统协调运行能力,考虑调节储能荷电状态(state of charge,SOC)通过模型预测控制实现计及电池运行寿命与超级电容SOC变化的动态功率分配。最后,结合实际风电功率数据进行仿真验证。结果表明,所提策略能够有效改善电池SOC、降低超级电容容量,符合储能平抑风电功率需求,能充分考虑两种储能设备的特性差异,提高功率分配的合理性,改善储能系统经济性。
文摘针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman filter based on adaptive spherical insensitive transformation,ASIT-UKF)算法。该算法通过使用球形不敏变换方式选择权系数以及初始化一元向量对sigma点的产生进行选取。与UKF算法相比,ASIT-UKF算法产生的sigma点减少近50%,使得算法的计算复杂度大大降低。同时,将产生的所有sigma点进行单位球形面上的归一化处理,提高了数值的稳定性。考虑到实际运行中锂电池系统噪声干扰带来的不确定性,加入Sage-Husa自适应滤波器对不确定性噪声的干扰进行实时更新和修正,以达到提高在线锂电池SOC估计精度的目的。最后,将均方根误差和最大绝对误差计算公式引入到性能估计指标中。实验结果表明,ASIT-UKF算法在准确度、鲁棒性和收敛性方面具有优越的性能。