The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in futu...The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.展开更多
To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into i...To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter.展开更多
风电大规模并网导致系统惯量严重降低,恶化了系统的频率稳定性。针对上述问题,该文结合非线性预测理论以及扩张状态观测理论(extended state observer,ESO)提出双馈风机参与电网频率调节的短期频率支撑方法。首先,建立与系统频率偏差和...风电大规模并网导致系统惯量严重降低,恶化了系统的频率稳定性。针对上述问题,该文结合非线性预测理论以及扩张状态观测理论(extended state observer,ESO)提出双馈风机参与电网频率调节的短期频率支撑方法。首先,建立与系统频率偏差和风机转速相关的目标状态方程,并计算不同控制目标量对应的预测阶;其次,根据非线性预测理论计算预测矩阵,对未来时刻状态跟踪误差进行预测,并求得非线性控制律;最后,引入扩张状态观测器对非线性控制律中的复杂李导数运算进行观测,减轻控制律所需的计算负担。通过MATLAB/SIMULINK搭建含风电系统进行仿真验证,结果表明,所提方法有效地改善了电网的频率响应,并且无需单独设计转速恢复环节,能够实现风机转速的自恢复。展开更多
针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂...针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。展开更多
针对基于剩余容量的电池使用能力描述方法不能线性对应车辆行驶里程的问题,分析了电池充放电能量的计算方法和影响因素,通过建立单体电池能量状态(State Of Energy,SOE)的定义和估算方法,提出了电池组最大可用能量的概念和串联电池组SO...针对基于剩余容量的电池使用能力描述方法不能线性对应车辆行驶里程的问题,分析了电池充放电能量的计算方法和影响因素,通过建立单体电池能量状态(State Of Energy,SOE)的定义和估算方法,提出了电池组最大可用能量的概念和串联电池组SOE估算方法,为纯电动汽车行驶里程的准确估算和串联电池组均衡维护提供理论依据.展开更多
基金Project(2022YFC2904502)supported by the National Key Research and Development Program of ChinaProject(62273357)supported by the National Natural Science Foundation of China。
文摘The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.
基金Project(200801346) supported by the China Postdoctoral Science FoundationProject(2008RS4022) supported by the Hunan Postdoctoral Scientific ProgramProject(2008) supported by the Postdoctoral Science Foundation of Central South University
文摘To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter.
文摘风电大规模并网导致系统惯量严重降低,恶化了系统的频率稳定性。针对上述问题,该文结合非线性预测理论以及扩张状态观测理论(extended state observer,ESO)提出双馈风机参与电网频率调节的短期频率支撑方法。首先,建立与系统频率偏差和风机转速相关的目标状态方程,并计算不同控制目标量对应的预测阶;其次,根据非线性预测理论计算预测矩阵,对未来时刻状态跟踪误差进行预测,并求得非线性控制律;最后,引入扩张状态观测器对非线性控制律中的复杂李导数运算进行观测,减轻控制律所需的计算负担。通过MATLAB/SIMULINK搭建含风电系统进行仿真验证,结果表明,所提方法有效地改善了电网的频率响应,并且无需单独设计转速恢复环节,能够实现风机转速的自恢复。
文摘针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。
文摘针对基于剩余容量的电池使用能力描述方法不能线性对应车辆行驶里程的问题,分析了电池充放电能量的计算方法和影响因素,通过建立单体电池能量状态(State Of Energy,SOE)的定义和估算方法,提出了电池组最大可用能量的概念和串联电池组SOE估算方法,为纯电动汽车行驶里程的准确估算和串联电池组均衡维护提供理论依据.