In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
Predictive microbiology was utilized to model Staphylococcus aureus (S. aureus) growth and staphylococcal enterotoxin A (SEA) production in milk in this study. The modifed logistic model, modifed Gompertz model an...Predictive microbiology was utilized to model Staphylococcus aureus (S. aureus) growth and staphylococcal enterotoxin A (SEA) production in milk in this study. The modifed logistic model, modifed Gompertz model and Baranyi model were applied to model growth data of S. aureus between 15℃ and 37℃. Model comparisons indicated that Baranyi model described the growth data more accurately than two others with a mean square error of 0.0129. Growth rates generated from Baranyi model matched the observed ones with a bias factor of 0.999 and an accuracy factor of 1.01, and ft a square root model with respect to temperature; other two modifed models both overestimated the observed ones. SEA amount began to be detected when the cell number reached106.4 cfu ? mL-1, and showed the linear correlation with time. Besides, the rate of SEA production ftted an exponential relationship as a function of temperature. Predictions based on the study could be applied to indicate possible growth of S. aureus and prevent the occurrence of staphylococcal food poisoning.展开更多
某些链球菌菌株的细胞壁中含有一种能与免疫球蛋白G(immunoglobulin,IgG)结合的蛋白质成分,称为IgG Fc段受体或链球菌G蛋白(streptococcal protein G)。近年来,此种蛋白质已被成功分离、纯化,并应用于免疫学研究。与经典的葡萄球菌A蛋白...某些链球菌菌株的细胞壁中含有一种能与免疫球蛋白G(immunoglobulin,IgG)结合的蛋白质成分,称为IgG Fc段受体或链球菌G蛋白(streptococcal protein G)。近年来,此种蛋白质已被成功分离、纯化,并应用于免疫学研究。与经典的葡萄球菌A蛋白(staphylococcal protein A,SPA)相比,链球菌G蛋白(以下简称SPG)更易与IgG发生反应,亲和力强,结合谱广,已受到密切的关注。目前,国内尚未见有关SPG研究的综述文章及实验报道。现将国外SPG研究的新进展介绍如下。展开更多
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金Supported by"Academic Backbone"Project of Northeast Agricultural University(15XG26)the National High-level Talents Special Support Program of China
文摘Predictive microbiology was utilized to model Staphylococcus aureus (S. aureus) growth and staphylococcal enterotoxin A (SEA) production in milk in this study. The modifed logistic model, modifed Gompertz model and Baranyi model were applied to model growth data of S. aureus between 15℃ and 37℃. Model comparisons indicated that Baranyi model described the growth data more accurately than two others with a mean square error of 0.0129. Growth rates generated from Baranyi model matched the observed ones with a bias factor of 0.999 and an accuracy factor of 1.01, and ft a square root model with respect to temperature; other two modifed models both overestimated the observed ones. SEA amount began to be detected when the cell number reached106.4 cfu ? mL-1, and showed the linear correlation with time. Besides, the rate of SEA production ftted an exponential relationship as a function of temperature. Predictions based on the study could be applied to indicate possible growth of S. aureus and prevent the occurrence of staphylococcal food poisoning.
文摘某些链球菌菌株的细胞壁中含有一种能与免疫球蛋白G(immunoglobulin,IgG)结合的蛋白质成分,称为IgG Fc段受体或链球菌G蛋白(streptococcal protein G)。近年来,此种蛋白质已被成功分离、纯化,并应用于免疫学研究。与经典的葡萄球菌A蛋白(staphylococcal protein A,SPA)相比,链球菌G蛋白(以下简称SPG)更易与IgG发生反应,亲和力强,结合谱广,已受到密切的关注。目前,国内尚未见有关SPG研究的综述文章及实验报道。现将国外SPG研究的新进展介绍如下。