期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:2
1
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
2
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
基于栈式降噪稀疏自动编码器的雷达目标识别方法 被引量:13
3
作者 赵飞翔 刘永祥 霍凯 《雷达学报(中英文)》 CSCD 2017年第2期149-156,共8页
雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响... 雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响,该文提出一种基于栈式降噪稀疏自动编码器的雷达目标识别方法,通过设置不同隐藏层数和迭代次数,从雷达数据中直接高效地提取识别所需的各层次特征。暗室仿真数据实验结果验证了该方法较K近邻分类方法及传统栈式自编码器有更好的识别效果。 展开更多
关键词 目标识别 深度学习 栈式降噪稀疏自动编码器
在线阅读 下载PDF
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
4
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 栈式稀疏降噪自编码网络
在线阅读 下载PDF
基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型 被引量:10
5
作者 刘辉 张超勇 戴稳 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2801-2812,共12页
刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、... 刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、频域及时频域上的特征参数,并根据相关性分析从中筛选出合格的特征参数合并为特征向量,以此作为堆叠稀疏去噪自动编码网络(SSDAE)的含噪样本。其次,利用特征后处理的方式对已经筛选出的特征参数进行单调不递减及平滑处理,并将其作为SSDAE的无噪样本来训练该网络。然后,将经过SSDAE降维后的特征向量作为多隐层反向传播神经网络(BPNN)的输入,以这些特征对应的实际铣刀的磨损量作为标签对该网络进行拟合训练。最后,对训练好的模型进行实验验证,通过测试数据集和人为加入噪声的测试数据集的对比,结果显示所提模型不仅具有较高的预测精度,还具有较高的鲁棒性。 展开更多
关键词 铣刀磨损 堆叠稀疏去噪自动编码网络 特征后处理 鲁棒性 反向传播神经网络
在线阅读 下载PDF
堆叠稀疏降噪自编码的脑电信号识别 被引量:3
6
作者 唐贤伦 刘雨微 +1 位作者 万亚利 马艺玮 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第1期62-67,共6页
该文以深度学习中的自动编码机为基础,对原始输入向量加入噪声处理,隐含层加入稀疏限制,再将单一的网络结构堆叠成深层神经网络,提出改进算法——堆叠稀疏降噪自动编码机。通过在两个不同数据集(实验室采集数据集和2005年BCI竞赛数据集I... 该文以深度学习中的自动编码机为基础,对原始输入向量加入噪声处理,隐含层加入稀疏限制,再将单一的网络结构堆叠成深层神经网络,提出改进算法——堆叠稀疏降噪自动编码机。通过在两个不同数据集(实验室采集数据集和2005年BCI竞赛数据集IVa)进行对比实验,结果表明该算法在运动想象脑电信号的特征提取上具有更强的学习能力和鲁棒性。 展开更多
关键词 降噪自动编码机 深度学习 脑电信号识别 稀疏 堆叠
在线阅读 下载PDF
堆栈式混合自编码器的人脸表情识别方法 被引量:7
7
作者 张志禹 王瑞琼 +1 位作者 魏敏敏 周杰 《计算机工程与应用》 CSCD 北大核心 2019年第13期140-144,200,共6页
针对进一步提高人脸表情识别率的问题,采用了一种基于深度学习的堆栈式混合自编码器(Stacked HybridAuto-Encoder,SHAE)的人脸表情识别方法。该方法的结构是由去噪自编码器(Denoising Auto-Encoder,DAE)、稀疏自编码器(Sparse Auto-Enco... 针对进一步提高人脸表情识别率的问题,采用了一种基于深度学习的堆栈式混合自编码器(Stacked HybridAuto-Encoder,SHAE)的人脸表情识别方法。该方法的结构是由去噪自编码器(Denoising Auto-Encoder,DAE)、稀疏自编码器(Sparse Auto-Encoder,SAE)以及自编码器(Auto-Encoder,AE)组合而成的5 层网络结构。为了增加网络的鲁棒性以及泛化能力,采用去噪自编码器对样本进行提取特征,为了对提取的特征进行降维以及进一步提取更抽象的稀疏特征,采用稀疏自编码器进行级联,来对特征进一步处理。训练过程首先由无标签的数据进行预训练和整体微调,对整个结构的权重进行初始化和更新调整,然后使用有标签的数据进行测试训练。在JAFFE和CK+两个数据集上实验显示,相较于单纯的堆栈式去噪自编码或者单纯的堆栈式稀疏自编码,该方法具有更好的识别效果。 展开更多
关键词 人脸表情识别 堆栈式混合自编码器(SHAE) 稀疏自编码器(SAE) 去噪自编码器(DAE)
在线阅读 下载PDF
面向中文语音情感识别的改进栈式自编码结构 被引量:6
8
作者 朱芳枚 赵力 +2 位作者 梁瑞宇 王青云 邹采荣 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期631-636,共6页
为进一步提高汉语语音情感识别率,基于深度学习中的自编码、降噪自编码及稀疏自编码的网络结构,提出了一种改进的栈式自编码结构.该结构第1层使用降噪自编码学习一个比输入特征维数更大的隐藏特征,第2层采用稀疏自编码学习稀疏性特征,... 为进一步提高汉语语音情感识别率,基于深度学习中的自编码、降噪自编码及稀疏自编码的网络结构,提出了一种改进的栈式自编码结构.该结构第1层使用降噪自编码学习一个比输入特征维数更大的隐藏特征,第2层采用稀疏自编码学习稀疏性特征,最后使用softmax分类器进行分类识别.训练过程首先采用逐层预训练的方法,达到网络参数全面初始化的目的,然后对整个网络进行微调.在中文语音库上的情感识别实验显示,相较于单独使用栈式降噪或稀疏自编码,所提结构具有更好的识别效果.此外,基于CASIA库的对比实验显示,该结构比K近邻算法、稀疏表示方法、传统支持向量机和人工神经网络识别率分别提高了53.7%,29.8%,14.3%和1.9%.在自行录制的语音库中,该结构的识别率比人工神经网络提高了1.64%. 展开更多
关键词 语音情感识别 改进的栈式自编码 降噪自编码 稀疏自编码
在线阅读 下载PDF
栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断 被引量:18
9
作者 陈仁祥 杨星 +3 位作者 杨黎霞 王家序 徐向阳 陈思杨 《振动与冲击》 EI CSCD 北大核心 2017年第21期125-131,137,共8页
针对滚动轴承损伤程度的特征自学习提取与智能诊断问题,提出栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断方法。滚动轴承损伤特征受到工况、环境噪声等干扰,浅层自编码网络对损伤特征的自学习、提取能力不足。为此,论文将稀... 针对滚动轴承损伤程度的特征自学习提取与智能诊断问题,提出栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断方法。滚动轴承损伤特征受到工况、环境噪声等干扰,浅层自编码网络对损伤特征的自学习、提取能力不足。为此,论文将稀疏项限制和加噪编码融入自编码网络,同时将自编码网络堆栈并添加分类层,构建出栈式稀疏加噪自编码深度神经网络,进行轴承损伤特征非监督自动提取与损伤程度智能诊断。稀疏项限制和深度神经网络的构建提高了特征学习能力,加噪编码的融入改善了网络的鲁棒性。所构建深度神经网络通过多层无监督逐层自学习和有监督微调,完成损伤特征自动提取与表达,并实现了损伤程度智能诊断。不同工况下轴承损伤程度诊断的实验验证证明了所提方法的可行性和有效性。 展开更多
关键词 滚动轴承 损伤程度 稀疏加噪自编码 深度神经网络 诊断
在线阅读 下载PDF
基于稀疏反演的多道匹配追踪地震信号去噪方法及其应用 被引量:13
10
作者 任浩 李宗杰 +1 位作者 薛姣 顾汉明 《石油物探》 EI CSCD 北大核心 2019年第2期199-207,共9页
基于超完备子波库的单道匹配追踪方法在自适应分解地震道时未能分离有效信号和噪声,故难以直接、准确地去除噪声。为此提出了基于稀疏反演的多道匹配追踪去噪方法,以多个连续地震道为研究对象,首先采用多方向矢量中值滤波法计算同相轴倾... 基于超完备子波库的单道匹配追踪方法在自适应分解地震道时未能分离有效信号和噪声,故难以直接、准确地去除噪声。为此提出了基于稀疏反演的多道匹配追踪去噪方法,以多个连续地震道为研究对象,首先采用多方向矢量中值滤波法计算同相轴倾角,以中间道为标准将同相轴校正后再水平叠加;然后采用基于基追踪降噪的稀疏反演方法分解叠加道,选择与叠加道中有效信号匹配的子波作为中间道匹配追踪分解的子波库;最后根据其它道相对中间道的校正量,对中间道匹配追踪分解的子波库进行反校正,分别构建各道匹配追踪分解的子波库。将基于有效信号匹配子波构建的子波库代替超完备子波库,在搜寻最佳匹配子波时选择性地提取地震道中有效信号,可直接分离有效信号和噪声。单道信号测试结果验证了该方法去除噪声的可行性;合成和实际地震数据应用结果表明,该方法相较于单道匹配追踪方法具有更好的去噪效果,且去噪后剖面的横向连续性更好。 展开更多
关键词 匹配追踪 连续地震道 稀疏反演 叠加道 超完备子波库 去噪 横向连续性
在线阅读 下载PDF
基于Focal损失SSDAE的变压器故障诊断方法 被引量:14
11
作者 武天府 刘征 +2 位作者 王志强 李劲松 李国锋 《电力工程技术》 北大核心 2021年第6期18-24,共7页
研究变压器的故障诊断对电力系统安全稳定运行具有重大现实意义。以油中溶解气体特征为输入的传统变压器故障诊断方法在处理样本不平衡数据时具有较大的局限性。针对这一问题,文中提出一种基于Focal损失栈式稀疏降噪自编码器(SSDAE)的... 研究变压器的故障诊断对电力系统安全稳定运行具有重大现实意义。以油中溶解气体特征为输入的传统变压器故障诊断方法在处理样本不平衡数据时具有较大的局限性。针对这一问题,文中提出一种基于Focal损失栈式稀疏降噪自编码器(SSDAE)的变压器故障诊断方法。该方法通过类别权重确定超参数,并在原始输入中加入高斯白噪声,有利于自编码器充分提取有效特征,进而得到有效的深度特征提取模型;采用Focal损失函数对模型进行优化,并利用Softmax分类器输出诊断结果。案例分析结果表明,与传统三比值法、反向传播神经网络(BPNN)和支持向量机(SVM)法等变压器故障诊断方法相比,文中方法可进一步提升诊断准确率。 展开更多
关键词 变压器 故障诊断 栈式稀疏降噪自编码器(SSDAE) Softmax分类器 Focal损失 类别权重
在线阅读 下载PDF
基于改进堆叠稀疏降噪自编码器的轴承故障诊断 被引量:9
12
作者 张智恒 周凤星 +1 位作者 严保康 喻尚 《轴承》 北大核心 2021年第2期35-41,共7页
为提高堆叠稀疏降噪自编码器的性能,解决其计算复杂度高、收敛速度慢等问题,提出了一种基于堆叠边缘化稀疏降噪自编码器的滚动轴承故障诊断方法。首先,对稀疏降噪自编码器的损失函数进行边缘化处理,并结合逐层贪婪训练策略构建出SMSDAE... 为提高堆叠稀疏降噪自编码器的性能,解决其计算复杂度高、收敛速度慢等问题,提出了一种基于堆叠边缘化稀疏降噪自编码器的滚动轴承故障诊断方法。首先,对稀疏降噪自编码器的损失函数进行边缘化处理,并结合逐层贪婪训练策略构建出SMSDAE网络;然后,将SMSDAE网络与Softmax分类器结合,得到SMSDAE-Softmax特征提取模型;最后,将提取到的特征输入到SVM多分类器中完成对滚动轴承的智能故障诊断。QPZZ-Ⅱ旋转机械故障模拟试验平台所得故障信号的处理结果表明,该方法的平均故障诊断率达到了99.9%,相对于其他方法具备更快的收敛速度,更好的诊断效果,以及更强的鲁棒性。另外,采用美国西储大学轴承数据中心10种轴承故障信号进行分析,结果证明了该方法在面对不同类型轴承以及多种故障信号时具备良好的诊断性能,有一定的普适性。 展开更多
关键词 滚动轴承 故障诊断 堆叠边缘化稀疏降噪自编码器 深度学习
在线阅读 下载PDF
自编码网络在JavaScript恶意代码检测中的应用研究 被引量:4
13
作者 龙廷艳 万良 丁红卫 《计算机科学与探索》 CSCD 北大核心 2019年第12期2073-2084,共12页
针对传统机器学习特征提取方法很难发掘JavaScript恶意代码深层次本质特征的问题,提出基于堆栈式稀疏降噪自编码网络(sSDAN)的JavaScript恶意代码检测方法。首先将JavaScript恶意代码进行数值化处理,然后在自编码网络的基础上加入稀疏... 针对传统机器学习特征提取方法很难发掘JavaScript恶意代码深层次本质特征的问题,提出基于堆栈式稀疏降噪自编码网络(sSDAN)的JavaScript恶意代码检测方法。首先将JavaScript恶意代码进行数值化处理,然后在自编码网络的基础上加入稀疏性限制,同时加入一定概率分布的噪声进行染噪的学习训练,使得自动编码器模型能够获取数据不同层次的特征表达;再经过无监督逐层贪婪的预训练和有监督的微调过程可以得到有效去噪后的更深层次特征;最后利用Softmax函数对特征进行分类。实验结果表明,稀疏降噪自编码分类算法对JavaScript具有较好的分类能力,其准确率高于传统机器学习模型,相比随机森林的方法提高了0.717%,相比支持向量机(SVM)的方法提高了2.237%。 展开更多
关键词 堆栈式稀疏降噪自编码网络(sSDAN) JavaScript恶意代码 机器学习
在线阅读 下载PDF
基于改进栈式自编码器的风电机组发电机健康评估 被引量:11
14
作者 林涛 赵成林 +1 位作者 刘航鹏 赵参参 《计算机工程与科学》 CSCD 北大核心 2020年第3期517-522,共6页
风电机组发电机具有结构复杂、维修困难的特点,为对其进行健康评估,结合去噪自编码器与稀疏自编码器的特点,对传统栈式自编码器模型进行改进,利用模型的重构误差监测风电机组发电机的运行状态。将经离线测试得到的重构误差与在线监测得... 风电机组发电机具有结构复杂、维修困难的特点,为对其进行健康评估,结合去噪自编码器与稀疏自编码器的特点,对传统栈式自编码器模型进行改进,利用模型的重构误差监测风电机组发电机的运行状态。将经离线测试得到的重构误差与在线监测得到的重构误差进行分布差异性比对,通过融合3种差异指标得到风电机组发电机的健康度。利用河北某风场实际数据对健康评估模型进行训练测试,通过实例分析证明该模型能够有效跟踪风电机组发电机的状态变化,具有故障早期识别的作用。 展开更多
关键词 风电机组发电机 健康度 栈式自编码器 去噪自编码 稀疏自编码器
在线阅读 下载PDF
基于堆叠稀疏降噪自编码器的暂态稳定评估模型 被引量:6
15
作者 温涛 张敏 王怀远 《电力工程技术》 北大核心 2022年第1期207-212,共6页
深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样... 深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样本,然后对受损数据样本进行高阶特征提取,最后将提取的高阶特征重构成未受损的数据,这一训练过程大大提高了模型的抗噪能力。同时,在对输入特征进行重构的过程中,对隐藏层神经元权重和激活程度进行抑制,实现模型的稀疏化,以此提高模型的泛化能力。仿真结果表明,相对于其他机器学习算法,SSDAE模型具有良好的抗噪能力和泛化能力。 展开更多
关键词 深度学习 堆叠稀疏降噪自编码器(SSDAE) 暂态稳定 抗噪声能力 泛化能力 机器学习
在线阅读 下载PDF
融合稀疏因子的情感分析堆叠降噪自编码器模型 被引量:1
16
作者 蒋宗礼 王一大 《计算机科学》 CSCD 北大核心 2017年第12期227-231,共5页
基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含... 基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含噪声和稀疏性对特征抽取的影响。使用COAE评测数据集进行的情感分析实验表明所提模型分类的准确率和召回率都有所提高。 展开更多
关键词 深度学习 堆叠降噪自编码器 稀疏因子 情感分析
在线阅读 下载PDF
基于多源栈式混合自编器的窃电检测 被引量:1
17
作者 韩金涛 雷景生 《计算机应用与软件》 北大核心 2022年第9期87-93,共7页
针对用电数据特征提取能力的不足,对用户用电量数据进行分析,提出一种基于多源栈式混合自编码器的窃电检测方法。通过构建混合自编码单元,提高模型抽象特征的提取能力,利用多源栈式网络增加网络深度,增强了模型的泛化能力,结合人工特征... 针对用电数据特征提取能力的不足,对用户用电量数据进行分析,提出一种基于多源栈式混合自编码器的窃电检测方法。通过构建混合自编码单元,提高模型抽象特征的提取能力,利用多源栈式网络增加网络深度,增强了模型的泛化能力,结合人工特征提取流程提高了分类准确率。在国家电网公布的真实用电量数据集上进行测试,验证了该模型的有效性。 展开更多
关键词 窃电检测 去噪自编码器 稀疏自编码器 多源栈式网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部