The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity funct...The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.展开更多
This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materi...This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.展开更多
The electronic structure and optical properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were studied using density-functional theory(DFT) within generalized gradient approximation(GGA).Th...The electronic structure and optical properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were studied using density-functional theory(DFT) within generalized gradient approximation(GGA).The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS) were presented.The calculated energy band structures show that both YZnAsO and LaZnAsO are indirect gap semiconductors with band gap of 1.173 1 eV and 1.166 5 eV,respectively.The DOS and PDOS show the hybridization of Y-O/La-O atom orbits and Zn-As atom orbits.The dielectric function,reflectivity,absorption coefficient,refractive index,electron energy-loss function and optical conductivity were presented in an energy range from 0 to 25 eV for discussing the optical properties of YZnAsO and LaZnAsO.展开更多
The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O....The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.展开更多
To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infra...To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infrared absorption spectrum of SiO2 in couplers at different drawing velocities was measured, and two characteristic peaks in the wavenumber range of 6502000 cm-1 were observed. One characteristic peak is at about 943 cm-1, which is (attributed) to Si—O—Si bond asymmetric stretching vibration, the other is at about 773 cm-1, which is attributed to (Si—O—Si) bond symmetric stretching vibration. From the infrared spectrum, it is found that the intensity and wavenumber of the characteristic peaks are related to the manufacturing technique of couplers. The characteristic peak at (about) 943 cm-1 becomes steeper when increasing the drawing velocity. At the drawing velocity of 150 μm/s, the distance between the two characteristic peaks is maximum, and then the optical fiber coupler has excellent performance, indicating that the performance of the optical fiber coupler has a close relationship with the wavenumber of the two characteristic peaks.展开更多
The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calcul...The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that the hP24 phase WB3 is metallic material.The density of state(DOS) and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states.Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics.Basic physical properties,such as lattice constant,bulk modulus,shear modulus and elastic constants Cij were calculated.The elastic modulus E and Poisson ratio υ were also predicted.The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner.Detailed analysis of all optical functions reveals that WB3 is a better dielectric material,and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5-11.4 eV and 14.5-15.5 eV.展开更多
GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nan...GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.展开更多
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
The coating of plastics for optical applications is intended to improve the mechanical durability of soft polymers and to serve an antireflection function. Usually a classic four-layer antireflection system is added o...The coating of plastics for optical applications is intended to improve the mechanical durability of soft polymers and to serve an antireflection function. Usually a classic four-layer antireflection system is added on top of a single-layer hard coating. With needle optimisation,an alternative coating design has been developed. Plasma ion assisted deposition was used to deposit coatings upon polymers. Uniform antireflection and high scratch resistance have been achieved.展开更多
New applications in optoelectronics, photonics, telecommunication, displays, optical data processing, biomedicine, sensors, energy control, automobile, aerospace, and architecture stimulation are important development...New applications in optoelectronics, photonics, telecommunication, displays, optical data processing, biomedicine, sensors, energy control, automobile, aerospace, and architecture stimulation are important developments in physics and technology of optical coatings. This paper will focus on the latest advances in the areas of new optical film systems and devices, new optical coating materials and film fabrication techniques, process control and monitoring, and different advanced applications. Particularly, focus is on optical films that combine optical design with microstructural features tailored on the nanometer and micrometer scales. Evaluation of film stability and integrity in harsh industrial environments and their compatibility with organic polymers are important as well.展开更多
To monitor the stress state of prestressed reinforcement in large reinforcement prestressed structure, two sensing structures, namely the direct spiral-winding structure and sawtooth modulated structure, were designed...To monitor the stress state of prestressed reinforcement in large reinforcement prestressed structure, two sensing structures, namely the direct spiral-winding structure and sawtooth modulated structure, were designed based on the ordinary communication optical fiber. The sensing theories were analyzed, and the experimental studies were also carried out. The quasi-distributed sensing system based on optical time domain reflective technology was established. The detection wavelength and spatial resolution were analyzed, and the estimation formula of maximal number of sensing point was also given. The results show that the system can realize the quasi-distributed test of measurand with single fiber, which helps to simplify the in-out wires. Moreover it can take on the important task of long-term and continuous monitoring of prestress, which helps to realize the life cycle detection of prestress, and play an important role in the estimating of bridge health state.展开更多
Modern industry and science take novel optical measuring systems and laser technologies with high resolution and productivity for solving actual tasks,including safety problems for mining,oil,atomic and railway in-dus...Modern industry and science take novel optical measuring systems and laser technologies with high resolution and productivity for solving actual tasks,including safety problems for mining,oil,atomic and railway in-dustries.The TDI SIE's results in these trends are presented.展开更多
文摘The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.
文摘This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.
基金Project(50474051) supported by the National Natural Science Foundation of China
文摘The electronic structure and optical properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were studied using density-functional theory(DFT) within generalized gradient approximation(GGA).The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS) were presented.The calculated energy band structures show that both YZnAsO and LaZnAsO are indirect gap semiconductors with band gap of 1.173 1 eV and 1.166 5 eV,respectively.The DOS and PDOS show the hybridization of Y-O/La-O atom orbits and Zn-As atom orbits.The dielectric function,reflectivity,absorption coefficient,refractive index,electron energy-loss function and optical conductivity were presented in an energy range from 0 to 25 eV for discussing the optical properties of YZnAsO and LaZnAsO.
基金Project(2014GXNSFAA118342)supported by Guangxi Natural Science Foundation,ChinaProject supported by Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,ChinaProject supported by High-level Innovation Team and Outstanding Scholar Program in Guangxi Colleges(the second batch),China
文摘The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.
文摘To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infrared absorption spectrum of SiO2 in couplers at different drawing velocities was measured, and two characteristic peaks in the wavenumber range of 6502000 cm-1 were observed. One characteristic peak is at about 943 cm-1, which is (attributed) to Si—O—Si bond asymmetric stretching vibration, the other is at about 773 cm-1, which is attributed to (Si—O—Si) bond symmetric stretching vibration. From the infrared spectrum, it is found that the intensity and wavenumber of the characteristic peaks are related to the manufacturing technique of couplers. The characteristic peak at (about) 943 cm-1 becomes steeper when increasing the drawing velocity. At the drawing velocity of 150 μm/s, the distance between the two characteristic peaks is maximum, and then the optical fiber coupler has excellent performance, indicating that the performance of the optical fiber coupler has a close relationship with the wavenumber of the two characteristic peaks.
基金Project(11271121)supported by the National Natural Science Foundation of ChinaProject(11JJ2002)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11K038)supported by Key Laboratory of Computational and Stochastic Mathematics of Ministry of Education of ChinaProject(2013GK3130)supported by the Scientific and Technological Plan of Hunan Province,China
文摘The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that the hP24 phase WB3 is metallic material.The density of state(DOS) and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states.Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics.Basic physical properties,such as lattice constant,bulk modulus,shear modulus and elastic constants Cij were calculated.The elastic modulus E and Poisson ratio υ were also predicted.The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner.Detailed analysis of all optical functions reveals that WB3 is a better dielectric material,and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5-11.4 eV and 14.5-15.5 eV.
文摘GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
文摘The coating of plastics for optical applications is intended to improve the mechanical durability of soft polymers and to serve an antireflection function. Usually a classic four-layer antireflection system is added on top of a single-layer hard coating. With needle optimisation,an alternative coating design has been developed. Plasma ion assisted deposition was used to deposit coatings upon polymers. Uniform antireflection and high scratch resistance have been achieved.
文摘New applications in optoelectronics, photonics, telecommunication, displays, optical data processing, biomedicine, sensors, energy control, automobile, aerospace, and architecture stimulation are important developments in physics and technology of optical coatings. This paper will focus on the latest advances in the areas of new optical film systems and devices, new optical coating materials and film fabrication techniques, process control and monitoring, and different advanced applications. Particularly, focus is on optical films that combine optical design with microstructural features tailored on the nanometer and micrometer scales. Evaluation of film stability and integrity in harsh industrial environments and their compatibility with organic polymers are important as well.
文摘To monitor the stress state of prestressed reinforcement in large reinforcement prestressed structure, two sensing structures, namely the direct spiral-winding structure and sawtooth modulated structure, were designed based on the ordinary communication optical fiber. The sensing theories were analyzed, and the experimental studies were also carried out. The quasi-distributed sensing system based on optical time domain reflective technology was established. The detection wavelength and spatial resolution were analyzed, and the estimation formula of maximal number of sensing point was also given. The results show that the system can realize the quasi-distributed test of measurand with single fiber, which helps to simplify the in-out wires. Moreover it can take on the important task of long-term and continuous monitoring of prestress, which helps to realize the life cycle detection of prestress, and play an important role in the estimating of bridge health state.
文摘Modern industry and science take novel optical measuring systems and laser technologies with high resolution and productivity for solving actual tasks,including safety problems for mining,oil,atomic and railway in-dustries.The TDI SIE's results in these trends are presented.