期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:2
1
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
2
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于堆叠降噪自编码网络和多源数据加权融合的发电机故障诊断方法
3
作者 邢超 马红升 +3 位作者 覃日升 张明强 鄢晶 刘焱 《高压电器》 北大核心 2025年第5期170-178,共9页
随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发... 随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发电机状态监测方法。首先,提出了一种基于加权D⁃S证据理论的SCADA⁃PMU数据融合方法;然后引入自动编码技术构建堆叠降噪自编码深度学习网络模型,提取训练数据集的深度特征,构建发电机故障检测模型;最后通过对重构误差进行平滑处理,结合自适应阈值检测状态监测量的趋势变化,实现故障判定。算例仿真结果表明,相比于基于单一数据源的传统方法,文中提出的方法具有更高的鲁棒性和精确性,从而有效提升了发电机故障诊断和状态监测的精细化水平。 展开更多
关键词 D⁃S证据理论 堆叠降噪自编码网络 故障诊断 状态检测
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
4
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 堆叠方法 序列到序列 双向长短期记忆网络 去噪自编码器
在线阅读 下载PDF
基于改进堆叠降噪自编码器的配电网高阻接地故障检测方法 被引量:2
5
作者 罗国敏 杨雪凤 +3 位作者 尚博阳 罗思敏 和敬涵 王小君 《电力系统保护与控制》 EI CSCD 北大核心 2024年第24期149-160,共12页
针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能。首先,结合时频数据处理手段刻画高阻接... 针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能。首先,结合时频数据处理手段刻画高阻接地故障与正常工况的物理特性差异,为构建故障样本特征库提供理论依据;其次,通过皮尔逊相关系数对时域、频域和时频域的故障特征进行分析与筛选,从而构造多域特征融合样本库,避免特征冗余现象;然后,利用极限学习机的强高维特征分类特性对堆叠降噪自编码器模型进行改进,以提高高阻接地故障分类器的鲁棒性和准确性;最后,在Matlab/Simulink中搭建10kV配电网仿真模型进行算例分析。结果表明,该方法在-1dB强噪声条件下仍有95.57%的高阻故障检测准确率,具有较高的工程实用价值。 展开更多
关键词 配电网 高阻接地故障 多域特征融合 堆叠降噪自编码器 极限学习机
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
6
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
基于MRSDAE-KPCA结合Bi-LST的滚动轴承剩余使用寿命预测 被引量:1
7
作者 古莹奎 陈家芳 石昌武 《噪声与振动控制》 CSCD 北大核心 2024年第3期95-100,145,共7页
针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承... 针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承剩余使用寿命预测方法。首先采用无监督的堆栈去噪自编码器网络对原始振动数据进行深层特征提取,并使用核主成分分析法进一步降维,以提高健康因子的指标稳定性;然后在堆栈去噪自编码器中加入流形正则化,最大程度保留编码器隐藏层内部的数据分布结构,提高模型提取数据特征的有效性。最后使用双向长短时记忆网络预测轴承的剩余使用寿命,并采用AdaMax优化算法对网络模型的超参数进行自适应寻优。分析结果表明,提出的滚动轴承剩余使用寿命预测方法具有更高的精度。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 健康因子 流形正则化堆栈去噪自编码器 双向长短时记忆网络
在线阅读 下载PDF
基于改进深层网络的人脸识别算法 被引量:48
8
作者 李倩玉 蒋建国 齐美彬 《电子学报》 EI CAS CSCD 北大核心 2017年第3期619-625,共7页
目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Co... 目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Component Analysis)白化等预处理,减小特征相关性,降低网络训练复杂度.然后,基于卷积、池化、多层稀疏自动编码器构建深层网络特征提取器.所使用的卷积核是通过单独的无监督学习获得的.此改进的深层网络通过预训练和微调,得到一个自动的深层特征提取器.最后,利用Softmax回归模型对提取的特征进行分类.本文算法在多个常用人脸库上进行了实验,表明了其在性能上比传统方法和普通深度学习方法都有所提高. 展开更多
关键词 人脸识别 改进的深层网络 卷积 池化 多层稀疏自动编码器
在线阅读 下载PDF
一种基于深度神经网络的无线定位方法 被引量:17
9
作者 刘侃 张伟 +2 位作者 张伟东 张友梅 顾建军 《计算机工程》 CAS CSCD 北大核心 2016年第7期82-85,共4页
考虑到信号波动会对无线定位产生影响,基于深度神经网络提出一种回归的无线定位方法。采用四层深度神经网络结构进行定位,通过堆叠去噪自编码器对网络结构进行预训练,避免采用人工设计的方式,从大量有噪的样本中,自动学习有效特征。分... 考虑到信号波动会对无线定位产生影响,基于深度神经网络提出一种回归的无线定位方法。采用四层深度神经网络结构进行定位,通过堆叠去噪自编码器对网络结构进行预训练,避免采用人工设计的方式,从大量有噪的样本中,自动学习有效特征。分不同时段从现实场景中采集数据进行实验,结果表明,针对波动的无线信号,该方法能有效提高定位准确率。 展开更多
关键词 无线定位 深度神经网络 回归 深度学习 堆叠去噪自编码器
在线阅读 下载PDF
基于栈式降噪稀疏自动编码器的雷达目标识别方法 被引量:13
10
作者 赵飞翔 刘永祥 霍凯 《雷达学报(中英文)》 CSCD 2017年第2期149-156,共8页
雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响... 雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响,该文提出一种基于栈式降噪稀疏自动编码器的雷达目标识别方法,通过设置不同隐藏层数和迭代次数,从雷达数据中直接高效地提取识别所需的各层次特征。暗室仿真数据实验结果验证了该方法较K近邻分类方法及传统栈式自编码器有更好的识别效果。 展开更多
关键词 目标识别 深度学习 栈式降噪稀疏自动编码器
在线阅读 下载PDF
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
11
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 栈式稀疏降噪自编码网络
在线阅读 下载PDF
基于深度神经网络的液压泵泄漏状态识别 被引量:21
12
作者 陈里里 何颖 董绍江 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期86-94,共9页
针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器... 针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器的逐层学习对特征进行优化并提取出高维特征,然后使用Softmax进行识别。实验结果表明,堆栈稀疏自编码器能够有效地提取液压泵泄漏状态的高维特征,构建的深度神经网络可有效地识别液压泵泄漏状态,识别精度达到了97.6%。此外与支持向量机、极限学习机、卷积神经网络以及长短期记忆网络相比,深度神经网络具有更好的识别效果。 展开更多
关键词 液压泵 泄漏 堆栈稀疏自编码器 深度神经网络
在线阅读 下载PDF
基于栈式去噪自编码器的遥感图像分类 被引量:12
13
作者 张一飞 陈忠 +1 位作者 张峰 欧阳超 《计算机应用》 CSCD 北大核心 2016年第A02期171-174,188,共5页
针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练... 针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练数据中加入噪声以得到更为稳健的特征表达;然后,通过反向传播(BP)神经网络对特征进行有监督学习并利用误差反向传播对整个网络参数进行进一步优化得到最终的模型;最后,利用国产高分一号遥感数据进行实验验证。基于栈式去噪自编码器的遥感图像分类方法的总体分类精度和kappa精度分别达到95.7%和95.5%,均高于传统的支持向量机(SVM)和BP神经网络的分类精度。实验结果表明,所提出的方法能有效提高遥感图像的分类精度。 展开更多
关键词 深度学习 栈式去噪自编码器 反向传播神经网络 遥感图像 地物分类
在线阅读 下载PDF
基于半监督深度网络的冷连轧轧制力预报 被引量:13
14
作者 魏立新 翟博豪 +2 位作者 赵志伟 刘建朋 孙浩 《塑性工程学报》 CAS CSCD 北大核心 2020年第11期70-76,共7页
针对冷连轧生产中难以建立准确的轧制力数学模型的问题,提出了基于半监督深度网络的轧制力预报模型。首先,使用堆叠去噪自编码器逐层提取输入数据的高阶特征表示。为提高特征提取的有效性,根据输入值与目标值的相关性程度,对其各维度特... 针对冷连轧生产中难以建立准确的轧制力数学模型的问题,提出了基于半监督深度网络的轧制力预报模型。首先,使用堆叠去噪自编码器逐层提取输入数据的高阶特征表示。为提高特征提取的有效性,根据输入值与目标值的相关性程度,对其各维度特征损失函数施加不同比例,构成比例损失堆叠去噪自编码器。然后,使用比例损失堆叠去噪自编码器提取的高阶特征初始化深度网络,对目标值进行预测。仿真结果表明,该模型预测精度可控制在3%以内,实现了轧制力的高精度预测。 展开更多
关键词 冷连轧 轧制力预测 半监督学习 深度网络 比例损失堆叠去噪自编码器
在线阅读 下载PDF
基于稀疏降噪自编码器的深度置信网络 被引量:12
15
作者 曾安 张艺楠 +1 位作者 潘丹 Xiao-Wei Song 《计算机应用》 CSCD 北大核心 2017年第9期2585-2589,共5页
传统的深度置信网络(DBN)采用随机初始化受限玻尔兹曼机(RBM)的权值和偏置的方法初始化网络。虽然这在一定程度上克服了由BP算法带来的易陷入局部最优和训练时间长的问题,但随机初始化仍然会导致网络重构和原始输入的较大差别,这使得网... 传统的深度置信网络(DBN)采用随机初始化受限玻尔兹曼机(RBM)的权值和偏置的方法初始化网络。虽然这在一定程度上克服了由BP算法带来的易陷入局部最优和训练时间长的问题,但随机初始化仍然会导致网络重构和原始输入的较大差别,这使得网络无论在准确率还是学习效率上都无法得到进一步提升。针对以上问题,提出一种基于稀疏降噪自编码器(SDAE)的深度网络模型,其核心是稀疏降噪自编码器对数据的特征提取。首先,训练稀疏降噪自编码;然后,用训练后得到的权值和偏置来初始化深度置信网络;最后,训练深度置信网络。在Poker Hand纸牌游戏数据集和MNIST、USPS手写数据集上测试模型性能,在Poker Hand数据集下,方法的误差率比传统的深度置信网络降低46.4%,准确率和召回率依次提升15.56%和14.12%。实验结果表明,所提方法能有效地改善模型性能。 展开更多
关键词 深度置信网络 受限玻尔兹曼机 稀疏降噪自编码器 深度学习
在线阅读 下载PDF
基于堆稀疏自编码的二叉树集成入侵检测方法 被引量:7
16
作者 柳毅 阴梓然 洪洲 《计算机应用研究》 CSCD 北大核心 2020年第5期1474-1477,1487,共5页
为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分... 为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分解开来以便之后分开训练;再采用稀疏自编码器网络进行特征降维,采用该种降维方法可以保证在原始数据中抽取出更深层特征的基础上节省降维时间;最后通过lightGBM集成算法进行分类,而采用lightGBM模型相比其他模型可以在保证分类性能的情况下节省训练时间。实验利用NSL-KDD数据集测量了所提方法的准确率、精确率、召回率,并且综合评价指标F1在五类分类上平均分别达到了87.42%、98.20%、91.31%,优于对比算法,且明显节省了运算时间。 展开更多
关键词 入侵检测 堆稀疏自编码网络 lightGBM算法 不平衡数据 NSL-KDD数据集
在线阅读 下载PDF
基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型 被引量:10
17
作者 刘辉 张超勇 戴稳 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2801-2812,共12页
刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、... 刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、频域及时频域上的特征参数,并根据相关性分析从中筛选出合格的特征参数合并为特征向量,以此作为堆叠稀疏去噪自动编码网络(SSDAE)的含噪样本。其次,利用特征后处理的方式对已经筛选出的特征参数进行单调不递减及平滑处理,并将其作为SSDAE的无噪样本来训练该网络。然后,将经过SSDAE降维后的特征向量作为多隐层反向传播神经网络(BPNN)的输入,以这些特征对应的实际铣刀的磨损量作为标签对该网络进行拟合训练。最后,对训练好的模型进行实验验证,通过测试数据集和人为加入噪声的测试数据集的对比,结果显示所提模型不仅具有较高的预测精度,还具有较高的鲁棒性。 展开更多
关键词 铣刀磨损 堆叠稀疏去噪自动编码网络 特征后处理 鲁棒性 反向传播神经网络
在线阅读 下载PDF
基于MSSA+IESN+MFFN组合算法的齿轮箱早期故障智能诊断 被引量:2
18
作者 冯贺平 杨敬娜 +2 位作者 吴梅梅 薛林雁 王德永 《中国工程机械学报》 北大核心 2023年第2期172-177,共6页
齿轮箱故障诊断存在变速工况、样本数量偏少以及会形成强噪声情况,提出了一种通过多尺度特征融合网络(MFFN)实现故障诊断技术。对初始时域信号拓展形成多特征域,建立造多维堆栈稀疏自编码器(MSSA)对不同特征域进行故障采集,通过粒子群... 齿轮箱故障诊断存在变速工况、样本数量偏少以及会形成强噪声情况,提出了一种通过多尺度特征融合网络(MFFN)实现故障诊断技术。对初始时域信号拓展形成多特征域,建立造多维堆栈稀疏自编码器(MSSA)对不同特征域进行故障采集,通过粒子群算法优化回声状态网络(IESN)进行信号处理。研究结果表明:样本充足条件下,MFFN模型诊断时,定速工况为99.15%,变速工况为98.46%,达到了更高准确率并降低了标准差。在样本不足条件下,深度特征融合网络(DEFN)和MFFN对于样本数量减少表现出了优异鲁棒性,MFFN达到了更优的性能。在噪声干扰场景下,采用MFFN依然能够达到85%的准确率。该算法具备更优抗干扰性能,采用多维特征提取能够更好地适应处于强噪声干扰环境。该研究为实现传动系统的稳定运行提供了理论参考。 展开更多
关键词 齿轮箱 故障诊断 深度学习 多堆栈稀疏自编码器(MSSA) 多尺度特征融合网络(MFFN)
在线阅读 下载PDF
叠加去噪自动编码器结合深度神经网络的心电图信号分类方法 被引量:9
19
作者 颜菲 胡玉平 《计算机应用与软件》 北大核心 2019年第4期178-185,共8页
针对现有心电图信号分类方法精度较低,模型训练收敛速度较慢的缺点,提出一种基于叠加去噪自动编码器和深度神经网络方法的新型分类方法。该方法采用无监督学习方式,利用带有稀疏约束的叠加去噪自动编码器,实现心电图原始数据的特征学习... 针对现有心电图信号分类方法精度较低,模型训练收敛速度较慢的缺点,提出一种基于叠加去噪自动编码器和深度神经网络方法的新型分类方法。该方法采用无监督学习方式,利用带有稀疏约束的叠加去噪自动编码器,实现心电图原始数据的特征学习。基于深度神经网络对信号进行分类,同时利用监督式自主学习微调方法对神经网络权重进行适时调整,从而保证信号分类的精度和质量。利用三个机构的经典数据库对该方法进行实验研究,并与目前两种最新的方法进行对比。实验结果证明,该方法在专家标记样本较少的情况下,仍能明显提高心电图数据分类的准确率,同时加快训练时的收敛速度。 展开更多
关键词 心电图 信号分类 深度神经网络 叠加去噪自动编码器 权重自动调节
在线阅读 下载PDF
用于高光谱变化检测的多径卷积网络算法 被引量:3
20
作者 赵春晖 张锦林 +1 位作者 宿南 闫奕名 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第9期1398-1404,共7页
针对如何有效利用高光谱图像中的光谱信息和空间信息进行变化检测的问题,本文提出了一种基于堆叠降噪自动编码器并融合空间信息的多路径卷积网络的高光谱遥感图像变化检测方法。针对高光谱图像信息冗余的问题,使用训练堆叠降噪自动编码... 针对如何有效利用高光谱图像中的光谱信息和空间信息进行变化检测的问题,本文提出了一种基于堆叠降噪自动编码器并融合空间信息的多路径卷积网络的高光谱遥感图像变化检测方法。针对高光谱图像信息冗余的问题,使用训练堆叠降噪自动编码器将高光谱数据进行降维。为了得到2幅图像间的差异信息,使用光谱角来表征对应像素间的变化关系。为了利用遥感图像中的空间信息,使用光谱角矩阵中切比雪夫距离小于等于3的区域来进行空间信息的提取,构建一个融合了空间信息的多路径卷积神经网络,并通过该网络得到变化检测结果。在3个高光谱变化检测数据集上进行实验,实验结果表明该方法的总体误差低、准确率高和Kappa系数高,证明了该方法的有效性。 展开更多
关键词 变化检测 高光谱遥感图像 堆叠降噪自动编码器 光谱角 空间信息 多路径卷积网络
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部