期刊文献+
共找到430篇文章
< 1 2 22 >
每页显示 20 50 100
带状态检测机制的ELM-UKF算法估计锂电池SOC策略
1
作者 谈发明 赵俊杰 《汽车技术》 北大核心 2025年第2期46-54,共9页
为解决无迹卡尔曼滤波(UKF)算法对锂电池荷电状态(SOC)估计精度不高的问题,结合极限学习机(ELM)与UKF间的互补优势,提出了一种带状态检测机制的ELM-UKF组合算法估计锂电池SOC。首先,算法利用UKF估计电池SOC的相关滤波数据作为样本集训练... 为解决无迹卡尔曼滤波(UKF)算法对锂电池荷电状态(SOC)估计精度不高的问题,结合极限学习机(ELM)与UKF间的互补优势,提出了一种带状态检测机制的ELM-UKF组合算法估计锂电池SOC。首先,算法利用UKF估计电池SOC的相关滤波数据作为样本集训练ELM模型,将训练成功的ELM模型用于在线补偿UKF的SOC估计误差,进而实现估计偏差的实时修正;其次,算法针对ELM模型预测输出设计了状态检测机制,以此减小ELM模型预测输出过拟合对SOC估计波形平滑度的影响。试验结果表明,相较于单一类型的算法,所提出的组合算法具有良好的鲁棒性和泛化性,能有效提升锂电池SOC的估计效果。 展开更多
关键词 荷电状态 无迹卡尔曼滤波 极限学习机 状态检测 精度
在线阅读 下载PDF
基于IMLZC和SOA-ELM的轴承损伤识别方法
2
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程度和损伤程度 改进多尺度Lempel-Ziv复杂度 海鸥优化算法 参数最优极限学习机
在线阅读 下载PDF
Fast cross validation for regularized extreme learning machine 被引量:9
3
作者 Yongping Zhao Kangkang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期895-900,共6页
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo... A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated. 展开更多
关键词 extreme learning machine elm regularization theory cross validation neural networks.
在线阅读 下载PDF
Constrained voting extreme learning machine and its application 被引量:5
4
作者 MIN Mengcan CHEN Xiaofang XIE Yongfang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期209-219,共11页
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit... Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods. 展开更多
关键词 extreme learning machine(elm) majority voting ensemble method sample based learning superheat degree(SD)
在线阅读 下载PDF
基于改进PSO-ELM的坑湖水质预测与评价
5
作者 石秀峰 王进 +3 位作者 揣新 王绍平 罗长海 岳正波 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期145-150,共6页
采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(par... 采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(particle swarm optimization,PSO)对极限学习机(extreme learning machine,ELM)进行改进,提出一种基于PSO-ELM的水质预测模型,以安徽马鞍山某矿区坑湖为对象,使用不同网络模型对水质参数进行预测。结果表明,改进后的PSO-ELM模型较BP(back propagation)神经网络、传统ELM具有更高的预测精度,决定系数达到82%,均方误差仅为0.04,并且具有更快的计算和收敛速度。将训练集数据与预测数据相结合,采用Spearman秩相关系数法评价水质稳定性,结果表明pH值和主要无机盐离子质量浓度较为稳定,无明显变化趋势,满足生态和生产需求。 展开更多
关键词 水质监测 滑动窗口 粒子群优化算法(PSO) 极限学习机(elm) 水质评价
在线阅读 下载PDF
基于PSO-ELM的可植入UPQC的“源-网-荷-储”系统最优控制策略
6
作者 高波 刘川 +2 位作者 韩建 李泽文 韦宝泉 《电力系统保护与控制》 北大核心 2025年第2期62-72,共11页
针对传统“源-网-荷-储”(source network load storage,SNLS)系统的可再生能源渗透率低及电能质量差等问题,提出了一种可植入统一电能质量调节器(unified power quality conditioner,UPQC)的SNLS系统最优控制方案。该方案通过基于粒子... 针对传统“源-网-荷-储”(source network load storage,SNLS)系统的可再生能源渗透率低及电能质量差等问题,提出了一种可植入统一电能质量调节器(unified power quality conditioner,UPQC)的SNLS系统最优控制方案。该方案通过基于粒子群优化(particle swarm optimization,PSO)的极限学习机(extreme learning machine,ELM)方法实现。在多目标优化运行方案中:第一个优化目标为最大化光伏阵列发电量;第二、三个优化目标分别为最小化负荷电压偏差和最大化网侧功率因数;第四个优化目标则为最大化变换器的利用率。由于多目标优化问题不易实时求解,提出了一种基于优化目标优先权顺序的分层优化思想,将多目标优化问题简化为若干个单目标优化问题。然后,通过将求解的所有最优解集训练为PSO-ELM代理模型,以实现所提策略的快速精确执行。最后,通过仿真验证了所提方法的有效性。算例表明所提策略可提升可再生能源的消纳率与系统变换器的利用率,并优化电能质量。 展开更多
关键词 统一电能质量调节器 “源-网-荷-储”系统 光伏 PSO-elm
在线阅读 下载PDF
基于PSO−ELM的综采工作面液压支架姿态监测方法 被引量:4
7
作者 李磊 许春雨 +5 位作者 宋建成 田慕琴 宋单阳 张杰 郝振杰 马锐 《工矿自动化》 CSCD 北大核心 2024年第8期14-19,共6页
针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液... 针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液压支架顶梁支护姿态实时信息,对采集到的数据进行预处理,将处理后的数据输入PSO−ELM误差补偿模型中,得到解算误差预测值;同时通过卡尔曼滤波融合进行液压支架姿态解算,得到解算值;再用误差预测值对解算值进行误差补偿,从而求得更加准确的顶梁支护姿态数据。该方法只考虑加速度和角速度数据与解算误差的关系,不依赖具体的物理模型,可有效降低姿态解算累计误差。实验结果表明:液压支架顶梁俯仰角平均绝对误差由补偿前的1.4208°减少到0.0580°,且误差曲线具有良好的收敛性,验证了所提方法可持续稳定地监测液压支架的支护姿态。 展开更多
关键词 液压支架 顶梁俯仰角 姿态监测 误差补偿 粒子群优化 极限学习机 PSO−elm
在线阅读 下载PDF
基于FSSA-ELM的模拟电路故障诊断方法 被引量:3
8
作者 陈晓娟 刘禹盟 +1 位作者 曲畅 张昭华 《半导体技术》 北大核心 2024年第1期77-84,共8页
在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电... 在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电路故障数据进行特征提取,通过分数阶与麻雀搜索算法(SSA)相融合,对极限学习机(ELM)的权重和阈值进行寻优,将提取后的特征数据输入到FSSA-ELM模型中进行训练和测试。T型反馈网络反相比例运算电路诊断实例表明,FSSA-ELM的故障诊断用时相较于SSA-ELM缩短了891 s,单故障诊断准确率可达972%,比SSA-ELM和ELM分别提高了19%和28%;双故障诊断准确率可达95%,分别提高了04%和10%。该故障诊断方法准确率高、耗时短,具有较强的模拟电路故障检测能力。 展开更多
关键词 模拟电路 故障诊断 分数维度 麻雀搜索算法(SSA) 极限学习机(elm)
在线阅读 下载PDF
一种基于PSO-ELM的低渗透砂岩水淹层测井识别方法 被引量:1
9
作者 杨波 黄长兵 +2 位作者 何岩 李垚银 李路路 《断块油气田》 CAS CSCD 北大核心 2024年第4期645-651,共7页
水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应... 水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应特征分析基础上,提出了一种利用改进粒子群优化算法(Particle Swarm Optimization,PSO)及极限学习机(Extreme Learning Machine,ELM)的水淹层识别方法。首先,利用相关系数优选6个主控因素:RD,RS,GR,SP,DEN,AC。其次,采用改进粒子群算法对极限学习机模型进行参数寻优;最后,利用优化后的模型对研究区水淹层进行预测。结果表明,利用PSO-ELM模型识别水淹层,识别符合率达到91.7%,应用效果优于ELM模型及传统识别图版,为水淹层测井识别提供了新思路。 展开更多
关键词 相关系数 粒子群优化算法 极限学习机 水淹层识别
在线阅读 下载PDF
基于RCMFME和AO-ELM的齿轮箱损伤识别策略
10
作者 沈羽 赵旭 《机电工程》 CAS 北大核心 2024年第2期226-235,共10页
针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊... 针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊熵的基础上,对矢量的构造方式进行了改进,提出了能够同时考虑时间序列局部特征和全局特征的RCMFME方法;随后,利用RCMFME指标提取了齿轮箱振动信号的熵值,组建了故障特征向量;接着,利用AO算法对极限学习机的参数进行了自适应搜索,生成了参数最优的多类别分类器;最后,将训练样本的故障特征向量输入至AO-ELM分类模型中进行了模型训练,以构造性能最优的分类器,并实现了对齿轮箱测试样本的故障识别目的;利用两种齿轮箱振动数据集进行了实验,在识别准确率和识别稳定性方面,与相关的特征提取方法进行了对比。研究结果表明:采用基于RCMFME和AO-ELM的故障诊断方法能够分别取得100%和98%的分类准确率,平均识别准确率分别达到了100%和98%,优于精细复合多尺度全局模糊熵(RCMGFE)、精细复合多尺度模糊熵(RCMFE)、精细复合多尺度样本熵(RCMSE)。该方法具有显著的应用潜力。 展开更多
关键词 齿轮箱故障诊断 精细复合多尺度模糊测度熵 天鹰优化器 极限学习机 AO-elm分类模型 特征提取
在线阅读 下载PDF
基于IDT-SAE-ELM的煤矿电缆短路故障识别方法
11
作者 王清亮 李泓朴 +1 位作者 李书超 王伟峰 《西安科技大学学报》 北大核心 2024年第6期1205-1217,共13页
针对现有方法无法有效提取煤矿电缆短路故障深层特征而导致故障识别准确率和类型判定精度低的问题,提出了一种基于IDT-SAE-ELM的短路故障识别方法。首先采用IDT技术对传统SAE模型进行改进,以提高其高效捕获故障样本深层特征的能力;然后... 针对现有方法无法有效提取煤矿电缆短路故障深层特征而导致故障识别准确率和类型判定精度低的问题,提出了一种基于IDT-SAE-ELM的短路故障识别方法。首先采用IDT技术对传统SAE模型进行改进,以提高其高效捕获故障样本深层特征的能力;然后利用Adam算法优化IDT-SAE模型参数,实现了从原始电流信号自动获取短路故障特征量;最后利用ELM模型替代Softmax构造故障分类器,以提高SAE模型对特征差异性小的故障类型辨识能力,实现对煤矿电缆短路故障的识别与类型的智能判定。以煤矿电网实际参数进行短路故障仿真,分别利用Loss曲线与T-分布随机近邻嵌入算法可视化分析所提方法的抗过拟合能力与短路故障深层特征挖掘能力,采用准确率和精度对所提方法进行评价,结果表明:所提方法相较于传统SAE具有更好的故障特征提取能力和抗过拟合能力;所提方法对电缆短路故障的识别准确率稳定在99%左右,相较于RF、BPNN、ELM等人工智能方法,准确率分别提高了7.47%、5.82%、5.42%;在严重噪声干扰下,所提方法短路故障识别准确率始终保持在98.75%以上,有效提高了煤矿电缆短路故障识别准确率和类型判定精度,能够为越级跳闸原因判别、短路事故的分析与处理提供重要依据。 展开更多
关键词 煤矿 短路故障 堆栈自编码器 极限学习机 Dropout集成技术
在线阅读 下载PDF
基于PCA-PSO-ELM模型预测地震死亡人数研究 被引量:3
12
作者 陈韶金 刘子维 +2 位作者 周浩 江颖 翟笃林 《大地测量与地球动力学》 CSCD 北大核心 2024年第1期105-110,共6页
筛选42个历史地震震例,对地震震级、震源深度、震中烈度、抗震设防烈度、震中烈度与抗震设防烈度之差(ΔL)、人口密度以及发震时刻7个影响指标进行主成分分析(principal components analysis,PCA),构建粒子群优化(particle swarm optimi... 筛选42个历史地震震例,对地震震级、震源深度、震中烈度、抗震设防烈度、震中烈度与抗震设防烈度之差(ΔL)、人口密度以及发震时刻7个影响指标进行主成分分析(principal components analysis,PCA),构建粒子群优化(particle swarm optimization,PSO)极限学习机(extreme learning machine,ELM)地震死亡人数预测模型。将37个震例数据进行预处理和训练,并使用5个震例数据来检验模型的预测精度。实验结果表明,该PCA-PSO-ELM组合模型的平均误差率为10.87%,相比于PCA-ELM模型和ELM模型,其平均误差率分别降低8.70个百分点和18.38个百分点。因此,采用PCA-PSO-ELM组合模型预测地震死亡人数具有一定的可行性。 展开更多
关键词 地震死亡人数预测 主成分分析 粒子群优化 极限学习机 震后评估
在线阅读 下载PDF
基于PSO-ELM的变压器油纸绝缘状态无损评估方法 被引量:4
13
作者 张德文 张健 +3 位作者 曲利民 吴迪星 刘贺千 张明泽 《电力工程技术》 北大核心 2024年第3期201-208,共8页
油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用... 油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用粒子群优化-极限学习机(particle swarm optimization-extreme learning machine,PSO-ELM)算法的参数预测方法,实现了基于回复电压曲线特征参量的油纸绝缘老化与受潮状态量化评估。由油纸绝缘模型理化性能分析的对比结果可知,基于PSO-ELM方法的预测值精度远高于传统ELM方法,油纸绝缘内含水率及纸板聚合度预测的绝对误差范围分别小于±0.4%、±30。 展开更多
关键词 油浸式变压器 油纸绝缘 回复电压 粒子群优化-极限学习机(PSO-elm)算法 状态评估 无损检测
在线阅读 下载PDF
基于EMATE和POA-ELM的声音信号故障诊断方法 被引量:2
14
作者 徐浙君 王凯 +1 位作者 罗少杰 崔炳荣 《机电工程》 CAS 北大核心 2024年第6期956-968,共13页
常规的工程机械故障诊断方法一般需对振动信号进行分析,但采集振动信号时需要使振动传感器与工程机械相接触,在某些情况下工程机械表面不适合安装传感器,如设备的温度较高或者传感器的安装空间有限。针对这些问题,以声音信号作为故障诊... 常规的工程机械故障诊断方法一般需对振动信号进行分析,但采集振动信号时需要使振动传感器与工程机械相接触,在某些情况下工程机械表面不适合安装传感器,如设备的温度较高或者传感器的安装空间有限。针对这些问题,以声音信号作为故障诊断对象,提出了一种基于增强多尺度注意熵(EMATE)和鹈鹕优化算法优化极限学习机(POA-ELM)的工程机械故障诊断方法。首先,利用声音传感器采集了工程机械不同故障的声音信号,避免了振动传感器存在的接触式采集缺陷;然后,利用EMATE提取了声音信号中的故障信息,建立了表征工程机械不同故障状态的特征向量;接着,鉴于ELM的参数需要优化的问题,采用POA对ELM的关键参数进行了寻优,建立了参数自适应设置的ELM分类模型;最后,利用POA-ELM分类器对故障特征进行了辨识,实现了工程机械的故障识别,并利用往复压缩机和滚动轴承的声音信号数据集对基于EMATE-POA-ELM的故障诊断方法的有效性进行了验证。研究结果表明:将EMATE方法作为故障特征提取指标能够取得100%和99.23%的识别准确率,且特征提取的时间仅为53.88 s和172.47 s;与多尺度注意熵、复合多尺度注意熵、时移多尺度注意熵等指标相比,EMATE的平均故障识别准确率更高,并具有更好的综合性能。 展开更多
关键词 工程机械 往复压缩机 滚动轴承 故障数据集 增强多尺度注意熵 故障诊断 鹈鹕优化算法优化极限学习机
在线阅读 下载PDF
基于BA-ELM和模糊机会约束的源荷储资源协同运行 被引量:1
15
作者 张泽龙 陈宝生 +3 位作者 杨燕 靳盘龙 刘桐 赵嘉麒 《南京信息工程大学学报》 CAS 北大核心 2024年第5期618-629,共12页
可靠有效的中长期电力需求预测是电力生产输送的重要依据,同时我国新能源行业发展迅速,风光波动性的影响不可忽视,未来电力系统规划能否适应需求变化场景经济高效地运行成为研究热点.为综合考虑电力需求与电力系统协同运行,平抑新能源... 可靠有效的中长期电力需求预测是电力生产输送的重要依据,同时我国新能源行业发展迅速,风光波动性的影响不可忽视,未来电力系统规划能否适应需求变化场景经济高效地运行成为研究热点.为综合考虑电力需求与电力系统协同运行,平抑新能源波动与需求偏差,提出一种基于蝙蝠算法(Bat Algorithm,BA)优化极限学习机(Extreme Learning Machine,ELM)和引入模糊参数的源荷储资源协同运行算法的预测调度综合评价模型,并以西北某地区为例进行了分析研究,结果表明,该模型可以准确预测不同发展情景下的电力需求,并且可以为源荷储资源规划优化提出科学性参考意见. 展开更多
关键词 蝙蝠算法 极限学习机 需求预测 源网荷储 政策建议
在线阅读 下载PDF
Robust signal recognition algorithm based on machine learning in heterogeneous networks
16
作者 Xiaokai Liu Rong Li +1 位作者 Chenglin Zhao Pengbiao Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期333-342,共10页
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)... There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. 展开更多
关键词 heterogeneous networks automatic signal classification extreme learning machineelm features-extracted Rayleigh fading channel
在线阅读 下载PDF
基于VMD和ISSA-ELM的锂离子电池剩余使用寿命预测
17
作者 丁恒 黄凯 田海建 《电源学报》 CSCD 北大核心 2024年第6期188-198,共11页
准确预测锂离子电池的剩余使用寿命RUL(remaining useful life)对提高工作环境安全性和设备可靠性等具有重要意义。为提高RUL预测的稳定性和精度,提出1种基于去噪技术与混合数据驱动模型相结合的电池RUL预测方法。首先,利用变分模态分... 准确预测锂离子电池的剩余使用寿命RUL(remaining useful life)对提高工作环境安全性和设备可靠性等具有重要意义。为提高RUL预测的稳定性和精度,提出1种基于去噪技术与混合数据驱动模型相结合的电池RUL预测方法。首先,利用变分模态分解处理原始数据,采用相关性分析筛选出噪声分量,将残差与相关性较强的分量进行组合完成序列重构过程;其次,结合Tent混沌映射、正余弦算法和Levy飞行策略优化麻雀搜索算法SSA(sparrow search algorithm),通过寻优得到极限学习机ELM(extreme learning machine)的最优权阈值;最后,采用平滑去噪数据训练改进的SSA-ELM模型并完成RUL预测,采用NASA数据集验证算法有效性。实验结果表明,所提方法预测结果的平均绝对误差和均方根误差可分别控制在1.58%和2.14%内,具有较高的鲁棒性和预测精度,可应用于电池RUL预测。 展开更多
关键词 锂离子电池 剩余使用寿命预测 变分模态分解 麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于ISSA-ELM的船舶压载水系统故障诊断研究
18
作者 王曼绮 曹辉 +1 位作者 张琦 张宝中 《舰船科学技术》 北大核心 2024年第19期36-41,共6页
为了从船舶压载水系统中有效挖掘数据信息,降低极限学习机(ELM)初始参数随机性对故障诊断精度的影响,提出基于改进麻雀搜索算法(ISSA)优化ELM的船舶压载水系统故障诊断模型。首先,使用自适应加权策略和Levy飞行策略改进发现者位置公式,... 为了从船舶压载水系统中有效挖掘数据信息,降低极限学习机(ELM)初始参数随机性对故障诊断精度的影响,提出基于改进麻雀搜索算法(ISSA)优化ELM的船舶压载水系统故障诊断模型。首先,使用自适应加权策略和Levy飞行策略改进发现者位置公式,获得ISSA并验证其性能;而后利用改进后的麻雀搜索算法对ELM的初始输入权重和阈值进行优化,建立基于ISSA-ELM的故障诊断模型。结果表明,ISSA-ELM模型的故障诊断精度为96.6%,比SSAELM、PSO-ELM、GWO-ELM模型高出1.8%、3.5%和2.6%,比ELM和SVM模型高出4.5%和7.1%。 展开更多
关键词 船舶压载水系统 故障诊断 极限学习机(elm) 改进麻雀搜索算法(ISSA)
在线阅读 下载PDF
基于GWO-ELM的高速铣削力预测模型研究
19
作者 仵景岳 尹凝霞 +1 位作者 吕亮亮 麦青群 《宇航材料工艺》 CAS CSCD 北大核心 2024年第5期24-30,共7页
针对TC4钛合金、7574铝合金、AISI304不锈钢及45^(#)钢等宇航材料在高速铣削过程中的高速铣削力预测问题,引入基于灰狼算法(GWO)改进的极限学习机(ELM)模型构建高速铣削力预测模型,利用二阶多元回归模型分析确定隐含层节点数,预测结果... 针对TC4钛合金、7574铝合金、AISI304不锈钢及45^(#)钢等宇航材料在高速铣削过程中的高速铣削力预测问题,引入基于灰狼算法(GWO)改进的极限学习机(ELM)模型构建高速铣削力预测模型,利用二阶多元回归模型分析确定隐含层节点数,预测结果与BP、RBF、ELM等七种预测模型和实验结果进行比较。研究结果表明:基于GWO-ELM的高速铣削力预测模型隐含层节点数可以利用二阶多元回归模型分析确定,预测模型的准确率为98.8%、决定系数达到0.98871优于其他预测模型,故基于GWO-ELM的高速铣削力预测模型具有可行性和准确性,该研究结果可为GWO-ELM模型隐含层节点数的确定及高速铣削力预测模型的选择提供参考与借鉴。 展开更多
关键词 宇航材料 高速铣削力 灰狼算法(GWO) 极限学习机(elm)
在线阅读 下载PDF
基于集成型极限学习机的氢燃料电池寿命预测 被引量:3
20
作者 杨淇 陈景文 +4 位作者 华志广 李祥隆 赵冬冬 兰天一 窦满峰 《电工技术学报》 北大核心 2025年第3期964-974,共11页
基于数据驱动的寿命预测方法能精准预测质子交换膜燃料电池(PEMFC)的剩余使用寿命,提高预测性能是当前寿命预测领域的研究热点。针对PEMFC寿命预测过程中预测精度与鲁棒性的提升问题,基于统计学原理的寿命预测方法,提出一种集成极限学习... 基于数据驱动的寿命预测方法能精准预测质子交换膜燃料电池(PEMFC)的剩余使用寿命,提高预测性能是当前寿命预测领域的研究热点。针对PEMFC寿命预测过程中预测精度与鲁棒性的提升问题,基于统计学原理的寿命预测方法,提出一种集成极限学习机(EELM)结构,对PEMFC的寿命进行长期预测。集成结构中包含了50次重复测试,通过局部强化优化器算法对每次测试结果进行优化,提升了寿命预测精度。在长期预测的结果中,给出了EELM预测结果的平均值和95%置信区间,提升了系统的鲁棒性。最后采用稳态电流、准动态电流条件和动态电流下的老化数据集验证了所提方法的有效性与可行性。 展开更多
关键词 质子交换膜燃料电池 极限学习机 集成结构 局部强化优化器
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部