期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:2
1
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
基于改进Transformer的持续血糖浓度预测模型
2
作者 徐鹤 杨丹丹 +1 位作者 刘思行 季一木 《数据采集与处理》 北大核心 2025年第4期1065-1081,共17页
糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型... 糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型,旨在提高模型对传感器提取数据的适应性。在该模型中,堆叠式降噪自编码器(Stacked denoising auto encoder,SDAE)被嵌入Transformer编码器的结构中,实现对输入数据的重构去噪和特征提取;然后,采用混合位置编码策略替代原来的单一绝对位置编码嵌入,同时将轻量级解码器引入Transformer模型中,替代原始结构复杂的解码器,聚合来自不同层次的特征信息,同时获取局部和全局特征;最后,通过搭建的SDAE-改进Transformer网络对CGM数据序列并行化训练,更全面地捕捉数据中的时序模式和复杂关联,提高预测性能。实验结果表明,该模型相较于传统方法在血糖预测任务中取得了显著的性能提升,证实了其在处理CGM数据时的有效性和鲁棒性。 展开更多
关键词 持续血糖监测 神经网络 堆叠降噪自编码器 TRANSFORMER 注意力机制
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
3
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于堆叠降噪自编码网络和多源数据加权融合的发电机故障诊断方法
4
作者 邢超 马红升 +3 位作者 覃日升 张明强 鄢晶 刘焱 《高压电器》 北大核心 2025年第5期170-178,共9页
随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发... 随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发电机状态监测方法。首先,提出了一种基于加权D⁃S证据理论的SCADA⁃PMU数据融合方法;然后引入自动编码技术构建堆叠降噪自编码深度学习网络模型,提取训练数据集的深度特征,构建发电机故障检测模型;最后通过对重构误差进行平滑处理,结合自适应阈值检测状态监测量的趋势变化,实现故障判定。算例仿真结果表明,相比于基于单一数据源的传统方法,文中提出的方法具有更高的鲁棒性和精确性,从而有效提升了发电机故障诊断和状态监测的精细化水平。 展开更多
关键词 D⁃S证据理论 堆叠降噪自编码网络 故障诊断 状态检测
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
5
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 堆叠方法 序列到序列 双向长短期记忆网络 去噪自编码器
在线阅读 下载PDF
一种基于深度神经网络的无线定位方法 被引量:17
6
作者 刘侃 张伟 +2 位作者 张伟东 张友梅 顾建军 《计算机工程》 CAS CSCD 北大核心 2016年第7期82-85,共4页
考虑到信号波动会对无线定位产生影响,基于深度神经网络提出一种回归的无线定位方法。采用四层深度神经网络结构进行定位,通过堆叠去噪自编码器对网络结构进行预训练,避免采用人工设计的方式,从大量有噪的样本中,自动学习有效特征。分... 考虑到信号波动会对无线定位产生影响,基于深度神经网络提出一种回归的无线定位方法。采用四层深度神经网络结构进行定位,通过堆叠去噪自编码器对网络结构进行预训练,避免采用人工设计的方式,从大量有噪的样本中,自动学习有效特征。分不同时段从现实场景中采集数据进行实验,结果表明,针对波动的无线信号,该方法能有效提高定位准确率。 展开更多
关键词 无线定位 深度神经网络 回归 深度学习 堆叠去噪自编码器
在线阅读 下载PDF
一种基于两阶段深度学习的集成推荐模型 被引量:12
7
作者 王瑞琴 吴宗大 +1 位作者 蒋云良 楼俊钢 《计算机研究与发展》 EI CSCD 北大核心 2019年第8期1661-1669,共9页
近年来,深度学习技术被广泛应用于推荐系统领域并获得了很大的成功,然而深度学习模型的输入质量对学习结果具有很大影响,稀疏的输入特征向量不仅会增加后续模型训练的难度,而且容易导致学习结果落入局部最优.提出一个基于两阶段深度学... 近年来,深度学习技术被广泛应用于推荐系统领域并获得了很大的成功,然而深度学习模型的输入质量对学习结果具有很大影响,稀疏的输入特征向量不仅会增加后续模型训练的难度,而且容易导致学习结果落入局部最优.提出一个基于两阶段深度学习的集成推荐模型:首先,利用具有封闭式参数计算能力的边缘化堆叠去噪自动编码机进行用户和项目高层抽象特征的提取;然后,将得到的用户抽象特征和项目抽象特征进行连接并作为深度神经网络模型的输入向量,通过联合训练的方式进行参数学习和模型优化.此外,为了对低阶特征交互进行建模,推荐模型中还集成了基于原始特征向量的逻辑回归模型.在通用数据集上的大量对比实验研究表明:与当前流行的深度学习推荐方法相比,该方法在推荐精度和召回率方面都有所改善,甚至是在数据稀疏和冷启动的环境下. 展开更多
关键词 深度学习 边缘化堆叠去噪自动编码机 深度神经网络 特征提取
在线阅读 下载PDF
基于栈式去噪自编码器的遥感图像分类 被引量:12
8
作者 张一飞 陈忠 +1 位作者 张峰 欧阳超 《计算机应用》 CSCD 北大核心 2016年第A02期171-174,188,共5页
针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练... 针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练数据中加入噪声以得到更为稳健的特征表达;然后,通过反向传播(BP)神经网络对特征进行有监督学习并利用误差反向传播对整个网络参数进行进一步优化得到最终的模型;最后,利用国产高分一号遥感数据进行实验验证。基于栈式去噪自编码器的遥感图像分类方法的总体分类精度和kappa精度分别达到95.7%和95.5%,均高于传统的支持向量机(SVM)和BP神经网络的分类精度。实验结果表明,所提出的方法能有效提高遥感图像的分类精度。 展开更多
关键词 深度学习 栈式去噪自编码器 反向传播神经网络 遥感图像 地物分类
在线阅读 下载PDF
基于半监督深度网络的冷连轧轧制力预报 被引量:13
9
作者 魏立新 翟博豪 +2 位作者 赵志伟 刘建朋 孙浩 《塑性工程学报》 CAS CSCD 北大核心 2020年第11期70-76,共7页
针对冷连轧生产中难以建立准确的轧制力数学模型的问题,提出了基于半监督深度网络的轧制力预报模型。首先,使用堆叠去噪自编码器逐层提取输入数据的高阶特征表示。为提高特征提取的有效性,根据输入值与目标值的相关性程度,对其各维度特... 针对冷连轧生产中难以建立准确的轧制力数学模型的问题,提出了基于半监督深度网络的轧制力预报模型。首先,使用堆叠去噪自编码器逐层提取输入数据的高阶特征表示。为提高特征提取的有效性,根据输入值与目标值的相关性程度,对其各维度特征损失函数施加不同比例,构成比例损失堆叠去噪自编码器。然后,使用比例损失堆叠去噪自编码器提取的高阶特征初始化深度网络,对目标值进行预测。仿真结果表明,该模型预测精度可控制在3%以内,实现了轧制力的高精度预测。 展开更多
关键词 冷连轧 轧制力预测 半监督学习 深度网络 比例损失堆叠去噪自编码器
在线阅读 下载PDF
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
10
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 栈式稀疏降噪自编码网络
在线阅读 下载PDF
基于堆栈降噪自编码网络的机械设备磨损状态识别 被引量:5
11
作者 樊红卫 马宁阁 +3 位作者 张旭辉 高烁琪 曹现刚 马宏伟 《工矿自动化》 北大核心 2020年第11期6-11,共6页
通过磨粒铁谱图像识别可实现机械设备磨损状态识别,但基于机器学习的磨粒铁谱图像识别存在较多人工干预、普适性差。为解决上述问题,提出了一种基于堆栈降噪自编码网络的机械设备磨损状态识别方法。将多个降噪自编码网络进行堆叠,即上... 通过磨粒铁谱图像识别可实现机械设备磨损状态识别,但基于机器学习的磨粒铁谱图像识别存在较多人工干预、普适性差。为解决上述问题,提出了一种基于堆栈降噪自编码网络的机械设备磨损状态识别方法。将多个降噪自编码网络进行堆叠,即上一个降噪自编码网络隐含层的输出作为下一个降噪自编码网络的输入,并在最后一个降噪自编码网络隐含层后添加Softmax分类器,从而构建堆栈降噪自编码网络;利用磨粒铁谱图像对堆栈降噪自编码网络进行无监督预训练,并通过有监督微调优化网络参数,对磨粒铁谱图像进行分类,实现机械设备磨损状态智能识别。实验结果表明:当堆栈降噪自编码网络的激活函数为Relu、优化器为Adam、学习率为0.001时,网络性能最佳,识别准确率达98.43%。 展开更多
关键词 机械设备 磨损状态识别 铁谱图像 堆栈降噪自编码网络
在线阅读 下载PDF
基于贝叶斯优化的SWDAE-LSTM滚动轴承早期故障预测方法研究 被引量:51
12
作者 石怀涛 尚亚俊 +2 位作者 白晓天 郭磊 马辉 《振动与冲击》 EI CSCD 北大核心 2021年第18期286-297,共12页
针对滚动轴承的早期故障特征较弱,在强噪声背景下难以有效提取以致生命周期很难准确预测的问题,提出了一种基于贝叶斯优化(BO)的滑动窗堆叠去噪自编码器(SWDAE)和长短期记忆(LSTM)网络的早期故障预测模型。使用滑动窗算法保留具有非线... 针对滚动轴承的早期故障特征较弱,在强噪声背景下难以有效提取以致生命周期很难准确预测的问题,提出了一种基于贝叶斯优化(BO)的滑动窗堆叠去噪自编码器(SWDAE)和长短期记忆(LSTM)网络的早期故障预测模型。使用滑动窗算法保留具有非线性特征和时序特征的历史正常数据,输入到模型中进行训练,使模型学习滚动轴承的正常运行状态趋势。将滚动轴承运行的数据输入到训练好的SWDAE-LSTM模型中进行实时在线监控,利用模型的预测值与真实值的残差检测滚动轴承早期故障。针对模型超参数组合选择困难的问题,使用贝叶斯优化算法对模型的超参数进行调优。最后,使用美国辛辛那提大学智能维护中心(IMSCenter)的轴承全生命周期数据以及机械故障综合模拟实验装置获取的数据进行仿真实验验证。结果表明,使用贝叶斯优化算法进行智能调参的模型和基于时域指标的方法对比,可以更早的有效检测出滚动轴承的早期故障并具有很强的鲁棒性。与其余深度学习方法比较,其模型的诊断准确率高于其他方法,进一步证明了其有效性和可靠性。 展开更多
关键词 滚动轴承 早期故障预测 贝叶斯优化(BO) 滑动窗算法 堆叠去噪自编码(SWDAE) 长短时记忆(LSTM)网络
在线阅读 下载PDF
基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型 被引量:10
13
作者 刘辉 张超勇 戴稳 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2801-2812,共12页
刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、... 刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、频域及时频域上的特征参数,并根据相关性分析从中筛选出合格的特征参数合并为特征向量,以此作为堆叠稀疏去噪自动编码网络(SSDAE)的含噪样本。其次,利用特征后处理的方式对已经筛选出的特征参数进行单调不递减及平滑处理,并将其作为SSDAE的无噪样本来训练该网络。然后,将经过SSDAE降维后的特征向量作为多隐层反向传播神经网络(BPNN)的输入,以这些特征对应的实际铣刀的磨损量作为标签对该网络进行拟合训练。最后,对训练好的模型进行实验验证,通过测试数据集和人为加入噪声的测试数据集的对比,结果显示所提模型不仅具有较高的预测精度,还具有较高的鲁棒性。 展开更多
关键词 铣刀磨损 堆叠稀疏去噪自动编码网络 特征后处理 鲁棒性 反向传播神经网络
在线阅读 下载PDF
基于改进堆叠降噪自编码器的配电网高阻接地故障检测方法 被引量:3
14
作者 罗国敏 杨雪凤 +3 位作者 尚博阳 罗思敏 和敬涵 王小君 《电力系统保护与控制》 EI CSCD 北大核心 2024年第24期149-160,共12页
针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能。首先,结合时频数据处理手段刻画高阻接... 针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能。首先,结合时频数据处理手段刻画高阻接地故障与正常工况的物理特性差异,为构建故障样本特征库提供理论依据;其次,通过皮尔逊相关系数对时域、频域和时频域的故障特征进行分析与筛选,从而构造多域特征融合样本库,避免特征冗余现象;然后,利用极限学习机的强高维特征分类特性对堆叠降噪自编码器模型进行改进,以提高高阻接地故障分类器的鲁棒性和准确性;最后,在Matlab/Simulink中搭建10kV配电网仿真模型进行算例分析。结果表明,该方法在-1dB强噪声条件下仍有95.57%的高阻故障检测准确率,具有较高的工程实用价值。 展开更多
关键词 配电网 高阻接地故障 多域特征融合 堆叠降噪自编码器 极限学习机
在线阅读 下载PDF
基于深度学习的概率能量流快速计算方法 被引量:45
15
作者 余娟 杨燕 +5 位作者 杨知方 向明旭 谢松 周平 任鹏凌 张昱 《中国电机工程学报》 EI CSCD 北大核心 2019年第1期22-30,共9页
考虑新能源日益增长的不确定性,概率能量流在电–气综合能源系统分析中起到关键性作用。概率能量流计算需要求解大量高维非线性方程组。高计算代价和求解时间已成为概率能量流实际工程应用的瓶颈所在。为此,该文提出了利用深度神经网络... 考虑新能源日益增长的不确定性,概率能量流在电–气综合能源系统分析中起到关键性作用。概率能量流计算需要求解大量高维非线性方程组。高计算代价和求解时间已成为概率能量流实际工程应用的瓶颈所在。为此,该文提出了利用深度神经网络求解该问题的新方法。该方法借助堆栈降噪自动编码器(stacked denoising auto-encoders,SDAE)的深层堆栈结构以及编码解码过程,建立了基于SDAE的能量流模型,可有效挖掘非线性能量流方程的高阶特征。结合能量流输入输出性质不同、变化范围不一等数值特点,在SDAE模型中引入了修正线性单元(rectifiedlinearunit,ReLU)激活函数与离差标准化方法,可有效提高训练精度与速度。结合蒙特卡洛法抽样出待解样本,使用训练后的SDAE能量流模型,通过数据映射得到抽样样本的能量流结果,在不增加硬件成本的前提下求解概率能量流,求解时间和精度符合在线应用要求。最后,在IEEE14-NGS10电–气综合能源系统中验证了所提方法的有效性。 展开更多
关键词 概率能量流 深度神经网络 堆栈降噪自动编码器 蒙特卡洛模拟法
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
16
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
叠加去噪自动编码器结合深度神经网络的心电图信号分类方法 被引量:9
17
作者 颜菲 胡玉平 《计算机应用与软件》 北大核心 2019年第4期178-185,共8页
针对现有心电图信号分类方法精度较低,模型训练收敛速度较慢的缺点,提出一种基于叠加去噪自动编码器和深度神经网络方法的新型分类方法。该方法采用无监督学习方式,利用带有稀疏约束的叠加去噪自动编码器,实现心电图原始数据的特征学习... 针对现有心电图信号分类方法精度较低,模型训练收敛速度较慢的缺点,提出一种基于叠加去噪自动编码器和深度神经网络方法的新型分类方法。该方法采用无监督学习方式,利用带有稀疏约束的叠加去噪自动编码器,实现心电图原始数据的特征学习。基于深度神经网络对信号进行分类,同时利用监督式自主学习微调方法对神经网络权重进行适时调整,从而保证信号分类的精度和质量。利用三个机构的经典数据库对该方法进行实验研究,并与目前两种最新的方法进行对比。实验结果证明,该方法在专家标记样本较少的情况下,仍能明显提高心电图数据分类的准确率,同时加快训练时的收敛速度。 展开更多
关键词 心电图 信号分类 深度神经网络 叠加去噪自动编码器 权重自动调节
在线阅读 下载PDF
用于高光谱变化检测的多径卷积网络算法 被引量:3
18
作者 赵春晖 张锦林 +1 位作者 宿南 闫奕名 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第9期1398-1404,共7页
针对如何有效利用高光谱图像中的光谱信息和空间信息进行变化检测的问题,本文提出了一种基于堆叠降噪自动编码器并融合空间信息的多路径卷积网络的高光谱遥感图像变化检测方法。针对高光谱图像信息冗余的问题,使用训练堆叠降噪自动编码... 针对如何有效利用高光谱图像中的光谱信息和空间信息进行变化检测的问题,本文提出了一种基于堆叠降噪自动编码器并融合空间信息的多路径卷积网络的高光谱遥感图像变化检测方法。针对高光谱图像信息冗余的问题,使用训练堆叠降噪自动编码器将高光谱数据进行降维。为了得到2幅图像间的差异信息,使用光谱角来表征对应像素间的变化关系。为了利用遥感图像中的空间信息,使用光谱角矩阵中切比雪夫距离小于等于3的区域来进行空间信息的提取,构建一个融合了空间信息的多路径卷积神经网络,并通过该网络得到变化检测结果。在3个高光谱变化检测数据集上进行实验,实验结果表明该方法的总体误差低、准确率高和Kappa系数高,证明了该方法的有效性。 展开更多
关键词 变化检测 高光谱遥感图像 堆叠降噪自动编码器 光谱角 空间信息 多路径卷积网络
在线阅读 下载PDF
基于MRSDAE-KPCA结合Bi-LST的滚动轴承剩余使用寿命预测 被引量:1
19
作者 古莹奎 陈家芳 石昌武 《噪声与振动控制》 CSCD 北大核心 2024年第3期95-100,145,共7页
针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承... 针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承剩余使用寿命预测方法。首先采用无监督的堆栈去噪自编码器网络对原始振动数据进行深层特征提取,并使用核主成分分析法进一步降维,以提高健康因子的指标稳定性;然后在堆栈去噪自编码器中加入流形正则化,最大程度保留编码器隐藏层内部的数据分布结构,提高模型提取数据特征的有效性。最后使用双向长短时记忆网络预测轴承的剩余使用寿命,并采用AdaMax优化算法对网络模型的超参数进行自适应寻优。分析结果表明,提出的滚动轴承剩余使用寿命预测方法具有更高的精度。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 健康因子 流形正则化堆栈去噪自编码器 双向长短时记忆网络
在线阅读 下载PDF
面向网络入侵检测的GAN-SDAE-RF模型研究 被引量:16
20
作者 安磊 韩忠华 +1 位作者 林硕 尚文利 《计算机工程与应用》 CSCD 北大核心 2021年第21期155-164,共10页
针对传统机器学习方法在处理不平衡的海量高维数据时罕见攻击类检测率低的问题,提出了一种基于深度学习的随机森林算法的入侵检测模型,为了避免传统的随机森林面对高维数据和不平衡数据时分类精度低、稳定性差和对罕见攻击类检测率低的... 针对传统机器学习方法在处理不平衡的海量高维数据时罕见攻击类检测率低的问题,提出了一种基于深度学习的随机森林算法的入侵检测模型,为了避免传统的随机森林面对高维数据和不平衡数据时分类精度低、稳定性差和对罕见攻击类检测率低的问题,引入生成式对抗网络(GAN)和栈式降噪自编码器(SDAE)对随机森林算法(RF)进行改进。将罕见攻击类数据集输入GAN神经网络中,生成新的攻击类样本,改善网络入侵数据在样本集中不均衡分布的情况,通过堆叠深层的SDAE逐层抽取网络数据的分布规则,并结合各个编码层的系数惩罚和重构误差,来确定高维数据中与入侵行为相关的特征,基于降维后的特征数据构建森林决策树。采用UNSW-NB15数据集的实验结果表明,与SVM、KNN、CNN、LSTM、DBN方法相比,GAN-SDAE-RF整体检测准确率平均提高了9.39%、误报率和漏报率平均降低了9%和15.24%以及在少数类Analysis、Shellcode、Backdoor、Worms上检测率分别提高了26.8%、27.98%、27.85%、39.97%。 展开更多
关键词 深度学习 生成式对抗网络 栈式降噪自编码器 随机森林算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部