期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
ConvNeXt网络及Stacked BiLSTM-Self-Attention在轴承剩余寿命预测中的应用 被引量:1
1
作者 张印文 王琳霖 +1 位作者 薛文科 梁文婕 《机电工程》 CAS 北大核心 2024年第11期1977-1985,1994,共10页
在滚动轴承剩余使用寿命预测方面,采用传统方法时存在鲁棒性差、精度低等各种问题。近些年来深度学习的发展为解决这些问题提供了新的思路。为了进一步提高对轴承寿命的预测精度,提出了一种基于ConvNeXt网络、堆叠双向长短时记忆网络(SB... 在滚动轴承剩余使用寿命预测方面,采用传统方法时存在鲁棒性差、精度低等各种问题。近些年来深度学习的发展为解决这些问题提供了新的思路。为了进一步提高对轴承寿命的预测精度,提出了一种基于ConvNeXt网络、堆叠双向长短时记忆网络(SBiLSTM)和自注意力机制(Self-Attention)的滚动轴承寿命预测方法。首先,采用连续小波变换(CWT)构造了振动信号的时频图,以更好地捕捉信号的时域和频域特征;然后,将得到的时频图输入到构建的ConvNeXt网络中,通过卷积、池化和层归一化等操作,对时频图的关键特征进行了提取;最后,将提取后的特征输入到SBiLSTM-Self-Attention模块中,进一步提取了时序信息和特征权重分配数据,利用PHM2012挑战数据集进行了验证,通过实验分析了该方法的均方根误差(RMSE)和平均绝对误差(MAE)。研究结果表明:相较于现有技术方法,该方法的平均RMSE为0.031;与其他三种方法,即卷积神经网络(CNN)、深度残差双向门控循环单元(DRN-BiGRU)和深度卷积自注意力双向门控循环单元(DCNN-Self-Attention-BiGRU)相比,其平均RMSE值分别下降了79%、74%和55%,MAE值分别下降了78%、73%和53%,说明该方法在滚动轴承剩余寿命预测中有较好的性能。 展开更多
关键词 滚动轴承 剩余寿命预测 ConvNeXt网络 堆叠双向长短时记忆网络 自注意力机制 深度学习 连续小波变换
在线阅读 下载PDF
基于SSAE-IARO-BiLSTM的工业过程故障诊断研究 被引量:2
2
作者 张瑞成 孙伟良 梁卫征 《振动与冲击》 EI CSCD 北大核心 2024年第15期244-250,260,共8页
针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long ... 针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long short-term memory neural network, IARO-BiLSTM)的故障诊断方法。首先,利用SSAE网络强大的特征提取能力,实现对原始数据进行降维处理;其次,引入Circle混沌映射以达到丰富种群数量的目的,提出权重系数和Levy飞行机制改进人工兔算法的位置更新公式,提高人工兔算法的寻优能力,进而对BiLSTM网络的参数进行优化。最后,利用优化后的BiLSTM网络实现对故障的识别和分类。通过选取多组数据集进行验证,结果表明,基于SSAE-IARO-BiLSTM故障诊断方法能够准确地对故障进行识别和分类,且诊断准确率可达98%以上。 展开更多
关键词 故障诊断 人工兔算法(IARO) 双向长短时记忆网络(BiLSTM) 栈式稀疏自编码器(SSAE)
在线阅读 下载PDF
基于情感词典和堆叠残差的双向长短期记忆网络的情感分析 被引量:14
3
作者 罗浩然 杨青 《计算机应用》 CSCD 北大核心 2022年第4期1099-1107,共9页
情感分析作为自然语言处理(NLP)的细分研究方向经历了使用情感词典、机器学习和深度学习分析的发展过程。针对使用一般化的深度学习模型作为文本分类器对于特定领域的网络评论类型的文本的分析的精准度较低,训练时发生过拟合现象以及情... 情感分析作为自然语言处理(NLP)的细分研究方向经历了使用情感词典、机器学习和深度学习分析的发展过程。针对使用一般化的深度学习模型作为文本分类器对于特定领域的网络评论类型的文本的分析的精准度较低,训练时发生过拟合现象以及情感词典覆盖率低、编纂工作量大的问题,提出了基于情感词典和堆叠残差的双向长短期记忆(Bi-LSTM)网络的情感分析模型。首先,借助情感词典中情感词的设计覆盖“教育机器人”研究领域内的专业词汇,从而弥补Bi-LSTM模型在分析此类文本时精准度的不足;然后,使用Bi-LSTM和SnowNLP来降低情感词典的编纂体量。长短期记忆(LSTM)网络的“记忆门”“遗忘门”结构可以在保证充分考虑评论文本中的前后词语的关联性的同时,适时选择遗忘一些已分析词语,从而避免反向传播时的梯度爆炸问题。而在将堆叠残差的Bi-LSTM引入后,不仅使得模型的层数加深至8层,而且还使残差网络避免了叠加LSTM时会导致的“退化”问题;最后,通过适当设置和调整两部分的得分权重,并将总分使用Sigmoid激活函数标准化到[0,1]的区间上,按照[0,0.5],(0.5,1]的区间划分分别表示负面和正面情绪,完成情感分类。实验结果表明,在“教育机器人”评论数据集中,所提模型对于情感分类准确率相较于标准的LSTM模型提升了约4.5个百分点,相较于BERT提升了约2.0个百分点。综上,所提模型将基于情感词典和深度学习模型的情感分类方法一般化;而通过修改情感词典中的情感词汇并适当调整深度学习模型的结构和层数,所提模型可以应用于电子商务平台中各类商品的购物评价的精确情感分析,从而帮助企业洞悉消费者的购物心理和市场需求,同时也可以为消费者提供商品质量的一种参考标准。 展开更多
关键词 双向长短期记忆网络 购物评论 情感分析 堆叠残差 情感词典
在线阅读 下载PDF
基于SAE与CEEMDAN-BiLSTM组合模型的短期电力负荷预测 被引量:11
4
作者 黄炜 陈田 《计算机应用与软件》 北大核心 2022年第7期52-58,共7页
单一模型在迭代训练过程中由于模型的自身误差,最终会降低预测精度。为了提高预测的准确性,引入完整集成经验模态分解-双向长短期记忆网络(CEEMDAN-BiLSTM)作为误差修正模型,提出一种栈式自编码器(SAE)与CEEMDAN-BiLSTM相结合的负荷预... 单一模型在迭代训练过程中由于模型的自身误差,最终会降低预测精度。为了提高预测的准确性,引入完整集成经验模态分解-双向长短期记忆网络(CEEMDAN-BiLSTM)作为误差修正模型,提出一种栈式自编码器(SAE)与CEEMDAN-BiLSTM相结合的负荷预测模型。通过SAE模型学习气象因素、工作日类型、气温影响下负荷序列的主要特征,预测过程中产生的误差序列则反映了负荷序列的次要特征;使用CEEMDAN算法将误差序列分解为数个分量,针对每一项分量建立BiLSTM模型学习误差序列的时序特征,将各项分量的预测值累加得到误差的预测结果;将两种模型的预测值求和从而达到修正误差的目的。通过比较几种模型的预测结果表明:SAE与CEEMDAN-BiLSTM组合模型应用在短期电力负荷预测具有更好的准确性与稳定性。 展开更多
关键词 短期电力系统负荷预测 栈式自编码器 CEEMDAN 双向长短期记忆网络
在线阅读 下载PDF
基于AMSDAE-BLSTM的工业过程质量预测
5
作者 郭小萍 钟道金 李元 《电子测量技术》 北大核心 2023年第4期19-24,共6页
针对具有噪声干扰及延迟等特性的工业过程质量预测,本文提出了一种嵌入注意力机制的堆叠降噪自编码器与双向长短期记忆网络的方法。首先以无监督方式构建自编码器模型,利用高斯噪声对工业数据进行一次重构以实现去噪及去冗余作用;再次... 针对具有噪声干扰及延迟等特性的工业过程质量预测,本文提出了一种嵌入注意力机制的堆叠降噪自编码器与双向长短期记忆网络的方法。首先以无监督方式构建自编码器模型,利用高斯噪声对工业数据进行一次重构以实现去噪及去冗余作用;再次嵌入注意力机制对过程变量权重分配进行二次重构以实现深度特征提取;最后采用双向长短期记忆网络学习重构数据的时间序列趋势特征,克服数据间的延迟性,充分挖掘过程变量与质量变量间的潜在关系,实现精准预测。通过脱丁烷过程的单质量变量预测和硫磺回收过程的多变量质量预测仿真实验,验证了本文方法比BP、LSTM、BLSTM和DAE-BLSTM方法具有更精确的预测效果。 展开更多
关键词 质量预测 堆叠降噪自编码器 注意力机制 双向长短期记忆网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部