针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高...针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高维数据进行非线性降维与重构,利用SAE-BP神经网络完成分类识别。仿真结果表明,在干噪比(JNR)大于-1 dB的强噪声环境中,KPCA-SAE-BP网络算法对6种新型有源干扰的识别准确率达到90%以上,训练与识别时间少于0.7 s。相同参数条件下,与经典BP神经网络、SAE-BP网络、KPCA-BP网络、GA-BP网络相比,具有更好的检测识别性能。展开更多
针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智...针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智能故障诊断模型。首先,利用栈式自编码网络强大的特征自提取能力,实现故障信号深层频谱特征的自适应学习,通过引入稀疏项约束提高特征学习的泛化性能;其次,利用改进的灰狼算法实现支持向量机的参数优化;最后,基于优化后的SVM完成对故障特征向量的分类识别。所提混合智能故障诊断模型充分结合了深度神经网络强大的特征自学习能力和支持向量机优秀的小样本分类性能,避免了手工特征提取的弊端,可对不同故障类型的振动信号实现更精准的识别。多组对比实验表明,相比传统方法,笔者所提出的模型具有更优秀的故障识别能力,诊断准确率可达98%以上。展开更多
文摘针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智能故障诊断模型。首先,利用栈式自编码网络强大的特征自提取能力,实现故障信号深层频谱特征的自适应学习,通过引入稀疏项约束提高特征学习的泛化性能;其次,利用改进的灰狼算法实现支持向量机的参数优化;最后,基于优化后的SVM完成对故障特征向量的分类识别。所提混合智能故障诊断模型充分结合了深度神经网络强大的特征自学习能力和支持向量机优秀的小样本分类性能,避免了手工特征提取的弊端,可对不同故障类型的振动信号实现更精准的识别。多组对比实验表明,相比传统方法,笔者所提出的模型具有更优秀的故障识别能力,诊断准确率可达98%以上。