期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:2
1
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于SSAE和改进的IndRNN电力物联网入侵检测方法研究
2
作者 闵永仓 王勇 《计算机应用与软件》 北大核心 2025年第10期358-366,共9页
随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大... 随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大量冗余特征问题,并通过改进的IndRNN捕获时序信息,引入分层注意力机制,对关键特征进行增强。实验结果表明,该模型在准确率和误报率达到99.36%和0.67%的同时还大大缩短了检测时间,是一种有效电力物联网入侵检测模型。 展开更多
关键词 堆栈稀疏自编码器 独立循环神经网络 入侵检测 电力物联网
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
3
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
基于多特征优化的PolSAR数据农作物精细分类方法 被引量:1
4
作者 郭交 王鹤颖 +2 位作者 项诗雨 连嘉茜 王辉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期275-285,共11页
农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的... 农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的连续时序信息,有效提升表达作物遥感特征的丰富度,在农作物分类中独具优势。但多时相和多特征的引入必然导致模型运算量剧增,不利于工程应用。针对上述问题,本文提出了一种基于多特征优化的PolSAR数据农作物精细分类方法,首先对PolSAR数据进行多种极化目标分解及参数提取以获得多个散射特征;然后使用基于栈式稀疏自编码网络和ReliefF优选的方法进行特征增强与优化,获取最优特征集;最后构建具有2个分支结构的卷积神经网络,融合不同卷积深度输出的特征,完成农作物的高精度分类。通过对单时相数据的特征分析、单时相数据初步分类实验和多时相数据不同特征集结合分类器的对比实验,证明本文所提方法能够在低维特征输入的前提下,最大程度提取不同作物之间的差异性特征,准确高效地实现对农作物的精细分类,最高分类精度和Kappa系数分别达到97.69%和97.24%。 展开更多
关键词 农作物分类 POLSAR 栈式稀疏自编码网络 RELIEFF 卷积神经网络
在线阅读 下载PDF
基于融合模型的网络安全态势感知方法 被引量:10
5
作者 郭尚伟 刘树峰 +3 位作者 李子铭 欧阳德强 王宁 向涛 《计算机工程》 CAS CSCD 北大核心 2024年第11期1-9,共9页
伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在... 伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在数据特征提取及较长时间序列数据处理能力不足的问题,提出一种融合堆栈稀疏自编码器(SSAE)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(AM)的模型。通过SSAE和CNN提取数据特征,利用AM强化BiGRU对关键信息的关注度,实现对异常流量的攻击类别判定,并结合网络安全态势量化指标,对网络安全态势进行量化评分并划分等级。实验结果表明,融合模型在各项指标上均优于传统深度学习模型,能够准确感知网络态势。 展开更多
关键词 态势感知 威胁检测 堆叠稀疏自编码器 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于山区大气电场演变特征与雷电定位数据的雷电临近预警方法 被引量:4
6
作者 齐玥 杨庆 +2 位作者 王科 胡逸 徐肖伟 《高电压技术》 EI CAS CSCD 北大核心 2024年第10期4760-4771,共12页
由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法... 由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法。通过分析典型高原山区不同雷暴发展情况下的大气电场演化特性,发现山区大气电场可作为雷电定位数据的补充源,充分表征雷云剧烈放电和雷暴临近发展的特征信息。在预警过程中,首先将大气电场形态学梯度提取的快速抖动、暂态突变特征与时空匹配的地闪活动特征输入堆叠稀疏自编码器网络模型,判断监测区域附近是否出现雷云放电迹象,再利用雷暴距离变化或者电场波形变化判断雷电活动的临近趋势,最后综合两者的结果完成半径15km监测区域的雷电活动短时预警。在2023年云南山区雷雨季节的雷暴算例分析中,通过双源数据共同提取的山区雷暴活动预警特征的有效识别,可以实现预警准确率为90%,约44%的警报提前时间不小于30 min。 展开更多
关键词 高原山区 大气电场特征 雷电定位数据 雷电临近预警 堆叠稀疏自编码器网络
在线阅读 下载PDF
基于SCG优化SSAE-FFNN的电能质量复合扰动深度特征提取与分类 被引量:5
7
作者 丁皓月 吕干云 +3 位作者 史明明 费骏韬 俞明 吴启宇 《电力工程技术》 北大核心 2024年第3期99-110,共12页
随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要... 随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要意义。为此,文中提出一种基于堆叠稀疏自编码器(stacked sparse auto encoder,SSAE)和前馈神经网络(feedforward neural network,FFNN)的电能质量复合扰动分类方法。首先,基于IEEE标准构建PQDs仿真模型。然后,建立基于SSAE-FFNN的PQDs分类模型,并引入缩放共轭梯度(scaled conjugate gradient,SCG)算法对模型进行优化,以提高梯度下降速度和网络训练效率。接着,为有效降低堆叠网络的重构损失同时提取出深度的低维特征,构建SSAE的逐层训练集及微调策略。最后,通过算例分析验证文中方法的分类效果、鲁棒性、泛化性和适用场景规模。结果表明,文中方法能够有效识别电能质量复合扰动,对含误差扰动和某地市电网的21组实测扰动录波数据也有较高的分类准确率。 展开更多
关键词 电能质量 复合扰动分类 堆叠稀疏自编码器(SSAE) 深度特征提取 缩放共轭梯度(SCG) 前馈神经网络(FFNN)
在线阅读 下载PDF
基于SSAE-IARO-BiLSTM的工业过程故障诊断研究 被引量:2
8
作者 张瑞成 孙伟良 梁卫征 《振动与冲击》 EI CSCD 北大核心 2024年第15期244-250,260,共8页
针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long ... 针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long short-term memory neural network, IARO-BiLSTM)的故障诊断方法。首先,利用SSAE网络强大的特征提取能力,实现对原始数据进行降维处理;其次,引入Circle混沌映射以达到丰富种群数量的目的,提出权重系数和Levy飞行机制改进人工兔算法的位置更新公式,提高人工兔算法的寻优能力,进而对BiLSTM网络的参数进行优化。最后,利用优化后的BiLSTM网络实现对故障的识别和分类。通过选取多组数据集进行验证,结果表明,基于SSAE-IARO-BiLSTM故障诊断方法能够准确地对故障进行识别和分类,且诊断准确率可达98%以上。 展开更多
关键词 故障诊断 人工兔算法(IARO) 双向长短时记忆网络(BiLSTM) 栈式稀疏自编码器(SSAE)
在线阅读 下载PDF
基于改进深层网络的人脸识别算法 被引量:48
9
作者 李倩玉 蒋建国 齐美彬 《电子学报》 EI CAS CSCD 北大核心 2017年第3期619-625,共7页
目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Co... 目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Component Analysis)白化等预处理,减小特征相关性,降低网络训练复杂度.然后,基于卷积、池化、多层稀疏自动编码器构建深层网络特征提取器.所使用的卷积核是通过单独的无监督学习获得的.此改进的深层网络通过预训练和微调,得到一个自动的深层特征提取器.最后,利用Softmax回归模型对提取的特征进行分类.本文算法在多个常用人脸库上进行了实验,表明了其在性能上比传统方法和普通深度学习方法都有所提高. 展开更多
关键词 人脸识别 改进的深层网络 卷积 池化 多层稀疏自动编码器
在线阅读 下载PDF
基于深度神经网络的液压泵泄漏状态识别 被引量:21
10
作者 陈里里 何颖 董绍江 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期86-94,共9页
针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器... 针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器的逐层学习对特征进行优化并提取出高维特征,然后使用Softmax进行识别。实验结果表明,堆栈稀疏自编码器能够有效地提取液压泵泄漏状态的高维特征,构建的深度神经网络可有效地识别液压泵泄漏状态,识别精度达到了97.6%。此外与支持向量机、极限学习机、卷积神经网络以及长短期记忆网络相比,深度神经网络具有更好的识别效果。 展开更多
关键词 液压泵 泄漏 堆栈稀疏自编码器 深度神经网络
在线阅读 下载PDF
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
11
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 栈式稀疏降噪自编码网络
在线阅读 下载PDF
基于堆稀疏自编码的二叉树集成入侵检测方法 被引量:7
12
作者 柳毅 阴梓然 洪洲 《计算机应用研究》 CSCD 北大核心 2020年第5期1474-1477,1487,共5页
为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分... 为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分解开来以便之后分开训练;再采用稀疏自编码器网络进行特征降维,采用该种降维方法可以保证在原始数据中抽取出更深层特征的基础上节省降维时间;最后通过lightGBM集成算法进行分类,而采用lightGBM模型相比其他模型可以在保证分类性能的情况下节省训练时间。实验利用NSL-KDD数据集测量了所提方法的准确率、精确率、召回率,并且综合评价指标F1在五类分类上平均分别达到了87.42%、98.20%、91.31%,优于对比算法,且明显节省了运算时间。 展开更多
关键词 入侵检测 堆稀疏自编码网络 lightGBM算法 不平衡数据 NSL-KDD数据集
在线阅读 下载PDF
基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型 被引量:10
13
作者 刘辉 张超勇 戴稳 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2801-2812,共12页
刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、... 刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、频域及时频域上的特征参数,并根据相关性分析从中筛选出合格的特征参数合并为特征向量,以此作为堆叠稀疏去噪自动编码网络(SSDAE)的含噪样本。其次,利用特征后处理的方式对已经筛选出的特征参数进行单调不递减及平滑处理,并将其作为SSDAE的无噪样本来训练该网络。然后,将经过SSDAE降维后的特征向量作为多隐层反向传播神经网络(BPNN)的输入,以这些特征对应的实际铣刀的磨损量作为标签对该网络进行拟合训练。最后,对训练好的模型进行实验验证,通过测试数据集和人为加入噪声的测试数据集的对比,结果显示所提模型不仅具有较高的预测精度,还具有较高的鲁棒性。 展开更多
关键词 铣刀磨损 堆叠稀疏去噪自动编码网络 特征后处理 鲁棒性 反向传播神经网络
在线阅读 下载PDF
堆叠稀疏自编码深度神经网络算法及其在滚动轴承故障诊断中的应用 被引量:5
14
作者 刘自然 李谦 +1 位作者 颜丙生 尚坤 《机床与液压》 北大核心 2020年第23期208-213,共6页
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特... 针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率。 展开更多
关键词 堆叠稀疏自编码 深度神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于MSSA+IESN+MFFN组合算法的齿轮箱早期故障智能诊断 被引量:2
15
作者 冯贺平 杨敬娜 +2 位作者 吴梅梅 薛林雁 王德永 《中国工程机械学报》 北大核心 2023年第2期172-177,共6页
齿轮箱故障诊断存在变速工况、样本数量偏少以及会形成强噪声情况,提出了一种通过多尺度特征融合网络(MFFN)实现故障诊断技术。对初始时域信号拓展形成多特征域,建立造多维堆栈稀疏自编码器(MSSA)对不同特征域进行故障采集,通过粒子群... 齿轮箱故障诊断存在变速工况、样本数量偏少以及会形成强噪声情况,提出了一种通过多尺度特征融合网络(MFFN)实现故障诊断技术。对初始时域信号拓展形成多特征域,建立造多维堆栈稀疏自编码器(MSSA)对不同特征域进行故障采集,通过粒子群算法优化回声状态网络(IESN)进行信号处理。研究结果表明:样本充足条件下,MFFN模型诊断时,定速工况为99.15%,变速工况为98.46%,达到了更高准确率并降低了标准差。在样本不足条件下,深度特征融合网络(DEFN)和MFFN对于样本数量减少表现出了优异鲁棒性,MFFN达到了更优的性能。在噪声干扰场景下,采用MFFN依然能够达到85%的准确率。该算法具备更优抗干扰性能,采用多维特征提取能够更好地适应处于强噪声干扰环境。该研究为实现传动系统的稳定运行提供了理论参考。 展开更多
关键词 齿轮箱 故障诊断 深度学习 多堆栈稀疏自编码器(MSSA) 多尺度特征融合网络(MFFN)
在线阅读 下载PDF
基于稀疏堆叠降噪自编码器-深层神经网络的语音DOA估计算法 被引量:4
16
作者 郭业才 侯坤 《实验室研究与探索》 CAS 北大核心 2021年第3期1-4,13,共5页
针对传统波达方位(DOA)估计算法在低信噪比下定位误差大的问题,提出基于稀疏堆叠降噪自编码器-深层神经网络的语音DOA估计算法。该算法将阵列协方差矩阵上三角阵作为DOA估计特征输入到稀疏堆叠降噪自编码器进行预训练,采取迁移学习策略... 针对传统波达方位(DOA)估计算法在低信噪比下定位误差大的问题,提出基于稀疏堆叠降噪自编码器-深层神经网络的语音DOA估计算法。该算法将阵列协方差矩阵上三角阵作为DOA估计特征输入到稀疏堆叠降噪自编码器进行预训练,采取迁移学习策略将训练得到的最优权重作为深度神经网络的初始权重,提高网络的抗噪性、泛化性和收敛速度。仿真与实验结果表明,与传统DOA估计算法相比,该算法在低信噪比情况下定位误差小、准确度高。 展开更多
关键词 堆栈稀疏自编码器 深层神经网络 波达方位 迁移学习
在线阅读 下载PDF
栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断 被引量:18
17
作者 陈仁祥 杨星 +3 位作者 杨黎霞 王家序 徐向阳 陈思杨 《振动与冲击》 EI CSCD 北大核心 2017年第21期125-131,137,共8页
针对滚动轴承损伤程度的特征自学习提取与智能诊断问题,提出栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断方法。滚动轴承损伤特征受到工况、环境噪声等干扰,浅层自编码网络对损伤特征的自学习、提取能力不足。为此,论文将稀... 针对滚动轴承损伤程度的特征自学习提取与智能诊断问题,提出栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断方法。滚动轴承损伤特征受到工况、环境噪声等干扰,浅层自编码网络对损伤特征的自学习、提取能力不足。为此,论文将稀疏项限制和加噪编码融入自编码网络,同时将自编码网络堆栈并添加分类层,构建出栈式稀疏加噪自编码深度神经网络,进行轴承损伤特征非监督自动提取与损伤程度智能诊断。稀疏项限制和深度神经网络的构建提高了特征学习能力,加噪编码的融入改善了网络的鲁棒性。所构建深度神经网络通过多层无监督逐层自学习和有监督微调,完成损伤特征自动提取与表达,并实现了损伤程度智能诊断。不同工况下轴承损伤程度诊断的实验验证证明了所提方法的可行性和有效性。 展开更多
关键词 滚动轴承 损伤程度 稀疏加噪自编码 深度神经网络 诊断
在线阅读 下载PDF
改进的堆栈稀疏自编码矿物高光谱端元识别研究 被引量:4
18
作者 朱玲 秦凯 +1 位作者 李明 赵英俊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第4期1288-1293,共6页
自然界中岩石一般是由多种矿物集合而成的紧致混合物,由于高光谱传感器低空间分辨率的特征,获得的高光谱数据多为矿物组分的综合反映。受噪声干扰以及矿物复杂的混合机理等因素影响,高光谱端元识别和定量分析成为目前研究的热点与难点... 自然界中岩石一般是由多种矿物集合而成的紧致混合物,由于高光谱传感器低空间分辨率的特征,获得的高光谱数据多为矿物组分的综合反映。受噪声干扰以及矿物复杂的混合机理等因素影响,高光谱端元识别和定量分析成为目前研究的热点与难点。基于深度学习理论,对原始自编码结构进行改进,提出了一种改进的堆栈稀疏自编码的矿物高光谱端元识别方法(stacked sparse autoencoders,SSAE),为高光谱解混提供新的思路。首先,根据矿物混合光谱的特点,对原始自编码结构进行三点改进:第一,去掉自编码神经网络的偏置项(bias);第二,在隐藏层激活函数之前添加批归一化(batch normalization,BN)层,最后一层输出层使用Relu激活函数;第三,用光谱角函数(L SAD)代替均方误差(L MSE)作为目标函数。SSAE法通过梯度下降方式对目标函数进行优化求解获取神经网络参数。然后,利用Hapke模型建立不同矿物组合和不同质量分数的两个模拟数据集,数据集共包括高岭石、叶腊石、蒙脱石、绿泥石、白云母、方解石、赤铁矿、白云石、钾长石和褐铁矿10种常见矿物光谱。最后,利用SSAE方法对模拟数据集进行端元提取测试,测试结果与网络结构改进过程中产生的6种情况以及顶点成分分析法(VCA)和基于最小体积的变元切分增量拉格朗日单形体识别算法(SISAL)提取结果进行比较。实验证明,本研究提供的是一种盲端元识别方法,改进后的SSAE神经网络端元提取精度比未完成改进前有明显提升。SSAE法可以成功识别两个模拟数据集所有的端元,光谱角距离(spectral angle distance,SAD)的平均误差分别为0.0597和0.0344,与VCA法提取精度差异较小,均优于SISAL法的识别结果。SSAE法为矿物高光谱解混提供了新的方向,对高光谱遥感的地质应用和高光谱遥感定量分析研究具有较好的促进作用。 展开更多
关键词 堆栈稀疏自编码 神经网络 端元识别 高光谱 矿物
在线阅读 下载PDF
自适应类增量学习的物联网入侵检测系统 被引量:7
19
作者 刘强 张颖 +3 位作者 周卫祥 蒋先涛 周薇娜 周谋国 《计算机工程》 CAS CSCD 北大核心 2023年第2期169-174,共6页
传统物联网入侵检测系统难以实时检测新类别攻击,为此,提出一种基于堆叠稀疏自编码器(SSAE)和自组织增量神经网络(SOINN)的物联网入侵检测方法。SSAE对已知类别的攻击样本进行稀疏编码和特征提取,所提取的特征输入SOINN,SOINN形成符合... 传统物联网入侵检测系统难以实时检测新类别攻击,为此,提出一种基于堆叠稀疏自编码器(SSAE)和自组织增量神经网络(SOINN)的物联网入侵检测方法。SSAE对已知类别的攻击样本进行稀疏编码和特征提取,所提取的特征输入SOINN,SOINN形成符合流量特征空间分布的拓扑结构。当出现新类别训练样本的特征时,SOINN自适应地生成新节点以建立新的局部拓扑结构。为了保留SSAE在旧类别样本上的知识,对SOINN已有的拓扑结构施加约束,通过误差反向传递间接约束SSAE权重的变化。针对SOINN在新类别上产生的新局部拓扑结构进行自适应聚合和优化,从而实现新类别样本学习。实验结果表明,该方法能基于新类别数据对模型进行增量训练而无需历史类别数据,在CIC-IDS2017数据集的动态数据流中能有效检测新类别攻击同时缓解旧类别数据中存在的灾难性遗忘问题,在初始已知数据集上的准确率达到98.15%,完成3个阶段的类别增量学习后整体准确率仍能达到57.34%,优于KNN-SVM、mCNN等增量学习方法。 展开更多
关键词 入侵检测系统 堆叠稀疏自编码器 自组织增量神经网络 增量学习 知识保留
在线阅读 下载PDF
深度学习与多信号融合在铣刀磨损状态识别中的研究 被引量:6
20
作者 穆殿方 刘献礼 +4 位作者 岳彩旭 Steven Y.LIANG 陈志涛 李恒帅 徐梦迪 《机械科学与技术》 CSCD 北大核心 2021年第10期1581-1589,共9页
为精确地识别刀具磨损状态,提出了一种深度学习与多信号融合相结合的识别方法。以自编码网络为基础,构建了堆叠稀疏自编码网络。采集铣刀不同磨损状态下的力信号、振动信号及声发射信号,并对上述信号进行小波包分解以便获取能够表征铣... 为精确地识别刀具磨损状态,提出了一种深度学习与多信号融合相结合的识别方法。以自编码网络为基础,构建了堆叠稀疏自编码网络。采集铣刀不同磨损状态下的力信号、振动信号及声发射信号,并对上述信号进行小波包分解以便获取能够表征铣刀磨损的时频域特征。利用无监督学习和有监督学习对堆叠稀疏自编码网络进行训练,建立了深度学习的铣刀磨损状态识别模型。研究结果表明,多信号融合的深度学习模型对铣刀磨损状态识别准确率达到94.44%。 展开更多
关键词 刀具磨损 状态识别 深度学习 多信号融合 堆叠稀疏自编码网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部