Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ...Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.展开更多
In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance...In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance of the symmetric BM subjected to Lévy noise.Through numerical simulations,it is found that the operating performance of the motor can be greatly improved in asymmetric Lévy noise.Without any load,the Lévy noises with smaller stable indexes can let the motor give rise to a much greater current.With a load,the energy conversion efficiency of the motor can be enhanced by adjusting the stable indexes of the Lévy noises with symmetry breaking.The results of this research are of great significance for opening up BM’s intrinsic physical mechanism and promoting the development of nanotechnology.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiledcoil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 ...Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiledcoil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 μm·s-1and an attachment duration of about 1 s under physiological conditions. The available experimental data indicate a tradeoff between velocity and attachment duration under various experimental conditions, such as variation of the solution temperature,variation of the strain between the two motor domains, and so on. However, the underlying mechanism of the tradeoff is unknown. Here, the mechanism is explained by a theoretical study of the dynamics of the motor under various experimental conditions, reproducing quantitatively the available experimental data and providing additional predictions. How the various experimental conditions lead to different decreasing rates of attachment duration versus velocity is also explained.展开更多
针对轮毂电机驱动汽车(hub motor driven vehicle,HMDV)因开关磁阻电机自重和电机气隙偏心导致产生的垂向振动负效应严重恶化车辆的平顺性和操稳性的问题,提出一种基于分数阶滑模控制的HMDV可控动惯性悬架优化设计方法。首先,在轮毂驱...针对轮毂电机驱动汽车(hub motor driven vehicle,HMDV)因开关磁阻电机自重和电机气隙偏心导致产生的垂向振动负效应严重恶化车辆的平顺性和操稳性的问题,提出一种基于分数阶滑模控制的HMDV可控动惯性悬架优化设计方法。首先,在轮毂驱动电机气隙偏心产生的不平衡径向力基础上,建立HMDV 1/4混棚动惯性悬架,理论证明二阶混棚正实网络的优异性能;其次,采用HMDV二阶混棚正实网络作为参考模型,构建基于分数阶滑模控制理论的HMDV协调控制系统,在随机路面下进行平顺性仿真和分析;最后,进行HMDV 1/4悬架台架试验。试验结果表明,HMDV可控动惯性悬架与HMDV传统被动悬架相比,车身加速度均方根值、悬架动行程均方根值以及轮胎动载荷均方根值最大降幅分别为7.72%、30.64%以及11.54%。验证了所设计的HMDV可控动惯性悬架对于由开关磁阻电机造成的垂向振动负效应有优异的抑制性能。展开更多
The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Moti...The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Motion trajectory equations are derived for driving points of the stator. The motor operation and driving mechanisms are investigated. The vibration modes and the construction of the motor are analyzed by using the finite element method (FEM). A prototype motor is built and its stator dimension is 13 mm × 13 mm× 30 mm. The motor is experimentally characterized and the maximum output force of 5- 2 N is obtained.展开更多
A two degrees of freedom (DOF) positioning stage using novel linear ultrasonic motors is presented. The stage mainly consists of two linear ultrasonic motors, linear guides and tables. It can realize the long stroke...A two degrees of freedom (DOF) positioning stage using novel linear ultrasonic motors is presented. The stage mainly consists of two linear ultrasonic motors, linear guides and tables. It can realize the long stroke and reversible controlled motion in two directions. The wheel-shape linear ultrasonic motor applied in the stage utilizes two fourth-bending modes of non-uniform beam in orthogonal directions. Quick response, no backlash, high resolution, power-off self-braking, and long stroke are the attractive characteristics of the linear positioning stage. Experimental results show that z and y-direction tables can reach the destination without overshoot and the error is less than 2μm by using two linear encoders with a resolution of 1 μm. In the open-loop mode, the positioning stage achieves 1μm resolution at 0. 25 ms driving time.展开更多
A new rod-shaped traveling wave ultrasonic micromotor is developed. In the micromotor, five pieces of piezoelectric ceramics clamped by two metal cylinders are used as its stator. The driving principle of the rodshape...A new rod-shaped traveling wave ultrasonic micromotor is developed. In the micromotor, five pieces of piezoelectric ceramics clamped by two metal cylinders are used as its stator. The driving principle of the rodshaped ultrasonic motor is simulated. The stator structure and the position to lay these piezoelectric ceramics are calculated to improve the electro mechanical conversion efficiency. A flexible rotor is designed to reduce the radial slip between the stator and the rotor, and to improve the motor efficiency. The prototype motor and its micror driver are tested. The motor is 9 mm in out-diameter, 15 mm in length and 3.2 g in weight. When the motor operates with the first bending frequency (72 kHz) of the stator, its maximal rotational speed and the torque reach 520 r/rain and 4.5 mN · m. Results show that the motor has good stability. The speed fluctuation is controlled within 3% by the frequency automatic tracking technique.展开更多
基金the National Natural Science Foundation of China (Nos. 52388102, 52072317 and U2268210)the State Key Laboratory of Rail Transit Vehicle System (No. 2024RVL-T12)
文摘Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.
基金Project supported by the Research Group of Nonequilibrium Statistics(Grant No.14078206)Kunming University of Science and Technology,China.
文摘In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance of the symmetric BM subjected to Lévy noise.Through numerical simulations,it is found that the operating performance of the motor can be greatly improved in asymmetric Lévy noise.Without any load,the Lévy noises with smaller stable indexes can let the motor give rise to a much greater current.With a load,the energy conversion efficiency of the motor can be enhanced by adjusting the stable indexes of the Lévy noises with symmetry breaking.The results of this research are of great significance for opening up BM’s intrinsic physical mechanism and promoting the development of nanotechnology.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
文摘Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiledcoil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 μm·s-1and an attachment duration of about 1 s under physiological conditions. The available experimental data indicate a tradeoff between velocity and attachment duration under various experimental conditions, such as variation of the solution temperature,variation of the strain between the two motor domains, and so on. However, the underlying mechanism of the tradeoff is unknown. Here, the mechanism is explained by a theoretical study of the dynamics of the motor under various experimental conditions, reproducing quantitatively the available experimental data and providing additional predictions. How the various experimental conditions lead to different decreasing rates of attachment duration versus velocity is also explained.
基金Supported by the National Natural Science Foundation of China(50575103, 50735002)~~
文摘The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Motion trajectory equations are derived for driving points of the stator. The motor operation and driving mechanisms are investigated. The vibration modes and the construction of the motor are analyzed by using the finite element method (FEM). A prototype motor is built and its stator dimension is 13 mm × 13 mm× 30 mm. The motor is experimentally characterized and the maximum output force of 5- 2 N is obtained.
基金the National Natural Science Foundation of China (50735002)~~
文摘A two degrees of freedom (DOF) positioning stage using novel linear ultrasonic motors is presented. The stage mainly consists of two linear ultrasonic motors, linear guides and tables. It can realize the long stroke and reversible controlled motion in two directions. The wheel-shape linear ultrasonic motor applied in the stage utilizes two fourth-bending modes of non-uniform beam in orthogonal directions. Quick response, no backlash, high resolution, power-off self-braking, and long stroke are the attractive characteristics of the linear positioning stage. Experimental results show that z and y-direction tables can reach the destination without overshoot and the error is less than 2μm by using two linear encoders with a resolution of 1 μm. In the open-loop mode, the positioning stage achieves 1μm resolution at 0. 25 ms driving time.
文摘A new rod-shaped traveling wave ultrasonic micromotor is developed. In the micromotor, five pieces of piezoelectric ceramics clamped by two metal cylinders are used as its stator. The driving principle of the rodshaped ultrasonic motor is simulated. The stator structure and the position to lay these piezoelectric ceramics are calculated to improve the electro mechanical conversion efficiency. A flexible rotor is designed to reduce the radial slip between the stator and the rotor, and to improve the motor efficiency. The prototype motor and its micror driver are tested. The motor is 9 mm in out-diameter, 15 mm in length and 3.2 g in weight. When the motor operates with the first bending frequency (72 kHz) of the stator, its maximal rotational speed and the torque reach 520 r/rain and 4.5 mN · m. Results show that the motor has good stability. The speed fluctuation is controlled within 3% by the frequency automatic tracking technique.