A repeatable and simple thermal splicing method for low loss splice between fluoride and silica fibers is presented. The minimum splicing loss of 0.58 dB is achieved experimentally with this approach, Meanwhile, the p...A repeatable and simple thermal splicing method for low loss splice between fluoride and silica fibers is presented. The minimum splicing loss of 0.58 dB is achieved experimentally with this approach, Meanwhile, the power capacity of this splicing joint is also tested with a high power fiber laser. The maximum input power is up to 15 W, only limited by the available power of the laser source. To the best of our knowledge, this is the first report on thermal splicing between fluoride and silica fibers operating in a high power regime without any complicated ion-assisted deposition process.展开更多
通过重叠延伸PCR(gene splicing by overlap extension,SOE-PCR)扩增黄曲霉寡聚-1,6-葡萄糖苷酶基因和酿酒酵母α-信号肽序列,定向重组到整合型表达载体pδRCMB中,并在CICC1346中实现分泌表达;然后通过同源建模、利用分子模拟软件Discov...通过重叠延伸PCR(gene splicing by overlap extension,SOE-PCR)扩增黄曲霉寡聚-1,6-葡萄糖苷酶基因和酿酒酵母α-信号肽序列,定向重组到整合型表达载体pδRCMB中,并在CICC1346中实现分泌表达;然后通过同源建模、利用分子模拟软件Discovery Studio 4.1分析其蛋白结构,以对硝基苯-α-D-葡萄糖吡喃苷(pNPG)为底物,建立并确定酶活反应条件,并进行纯化、酶学性质分析;将密码子优化后序列在CICC1346中实现分泌表达,利用淀粉进行共发酵实验。结果显示:重组酶突变后相对野生型蛋白结构无影响。SDS-PAGE分析重组重组酶大小约为70 kDa;优化后最高酶活达到0.69 U/m L,重组酶最适pH为6.5,在pH4.5.0~7.0维持90%以上的酶活;最适温度为40℃,在30~40℃维持接近100%的酶活;受Cu^(2+)和Mn^(2+)严格抑制;寡聚-1,6-葡萄糖苷酶与α-淀粉酶及糖化酶协同利用淀粉产乙醇,提高淀粉水解效率。这是首次报道黄曲霉的寡聚-1,6-葡萄糖苷酶基因在酿酒酵母整合型分泌表达。展开更多
Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement ...Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement range when measuring granular flows with large bulk density and high-speed contrast.In this study,a novel PTV method is introduced to solve these problems using an optical flow matching algorithm with two further processing steps.The first step involves displacement correction,which is used to solve the mismatching problem in the case of high stacking density.The other step is trajectory splicing,which is used to solve the problem of a measurement range reduction in the case of high-speed contrast The hopper flow experimental results demonstrate superior performance of this proposed method in controlling the number of mismatched particles and better measuring efficiency in comparison with the traditional PTV method.展开更多
Dear Editor,Autophagy is an evolutionarily conserved catabolic process that involves the sequestration and transport of organelles,macromolecules,or invading microorganisms to lysosomes for degradation[1].Sequestosome...Dear Editor,Autophagy is an evolutionarily conserved catabolic process that involves the sequestration and transport of organelles,macromolecules,or invading microorganisms to lysosomes for degradation[1].Sequestosome 1(p62/SQSTM1)was the first protein shown to bind target-associated ubiquitin(Ub)and LC3 conjugated to the phagophore membrane,thus,acting as an important autophagy receptor for ubiquitinated targets[2].展开更多
近日,胃肠病学和肝脏病学领域顶级期刊Gut(影响因子16.658)在线发表了浙江大学基础医学院、中国药科大学校长来茂德教授团队的最新研究成果——SRSF6-regulated alternative splicing that promotes tumour progression offers a ther...近日,胃肠病学和肝脏病学领域顶级期刊Gut(影响因子16.658)在线发表了浙江大学基础医学院、中国药科大学校长来茂德教授团队的最新研究成果——SRSF6-regulated alternative splicing that promotes tumour progression offers a therapy target for colorectal cancer。来茂德教授和张红河副教授为共同通信作者。展开更多
Background:The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms,among which transcriptional regulation is one of the most important components.Alternative splicin...Background:The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms,among which transcriptional regulation is one of the most important components.Alternative splicing dramatically expands the regulatory network by producing transcript isoforms of genes to exquisitely control the cell cycle.However,the patterns of transcript isoform expression in the cell cycle are unclear.Therapies targeting cell cycle checkpoints are commonly used as anticancer therapies,but none of them have been designed or evaluated at the alternative splicing transcript level.The utility of these transcripts as markers of cell cycle-related drug sensitivity is still unknown,and studies on the expression patterns of cell cycle-targeting drug-related transcripts are also rare.Methods:To explore alternative splicing patterns during cell cycle progression,we performed sequential transcriptomic assays following cell cycle synchronization in colon cancer HCT116 and breast cancer MDA-MB-231 cell lines,using flow cytometry and reference cell cycle transcripts to confirm the cell cycle phases of samples,and we developed a new algorithm to describe the periodic patterns of transcripts fluctuating during the cell cycle.Genomics of Drug Sensitivity in Cancer(GDSC)drug sensitivity datasets and Cancer Cell Line Encyclopedia(CCLE)transcript datasets were used to assess the correlation of genes and their transcript isoforms with drug sensitivity.We identified transcripts associated with typical drugs targeting cell cycle by determining correlation coefficients.Cytotoxicity assays were used to confirm the effect of ENST00000257904 against cyclin dependent kinase 4/6(CDK4/6)inhibitors.Finally,alternative splicing transcripts associated with mitotic(M)phase arrest were analyzed using an RNA synthesis inhibition assay and transcriptome analysis.Results:We established high-resolution transcriptome datasets of synchronized cell cycle samples from colon cancer HCT116 and breast cancer MDA-MB-231 cells.The results of the cell cycle assessment showed that 43,326,41,578 and 29,244 transcripts were found to be periodically expressed in HeLa,HCT116 and MDA-MB-231 cells,respectively,among which 1280 transcripts showed this expression pattern in all three cancer cell lines.Drug sensitivity assessments showed that a large number of these transcripts displayed a higher correlation with drug sensitivity than their corresponding genes.Cell cycle-related drug screening showed that the level of the CDK4 transcript ENST00000547281 was more significantly associated with the resistance of cells to CDK4/6 inhibitors than the level of the CDK4 reference transcript ENST00000257904.The transcriptional inhibition assay following M phase arrest further confirmed the M-phase-specific expression of the splicing transcripts.Combined with the cell cycle-related drug screening,the results also showed that a set of periodic transcripts,for example,ENST00000314392(a dolichylphosphate mannosyltransferase polypeptide 2 isoform transcript),was more associated with drug sensitivity than the levels of their corresponding gene transcripts.Conclusions:In summary,we identified a panel of cell cycle-related periodic transcripts and found that the levels of transcripts of drug target genes showed different values for predicting drug sensitivity,providing novel insights into alternative splicing-related drug development and evaluation.展开更多
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear...To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61275144the Innovative Research and Development Project of Nanshan District under Grant No KC2013JSCX0013A+1 种基金the Shenzhen Science and Technology Innovation Projects under Grant No JCYJ20150324140036862the Funding from Shenzhen University under Grant No 00008355
文摘A repeatable and simple thermal splicing method for low loss splice between fluoride and silica fibers is presented. The minimum splicing loss of 0.58 dB is achieved experimentally with this approach, Meanwhile, the power capacity of this splicing joint is also tested with a high power fiber laser. The maximum input power is up to 15 W, only limited by the available power of the laser source. To the best of our knowledge, this is the first report on thermal splicing between fluoride and silica fibers operating in a high power regime without any complicated ion-assisted deposition process.
文摘通过重叠延伸PCR(gene splicing by overlap extension,SOE-PCR)扩增黄曲霉寡聚-1,6-葡萄糖苷酶基因和酿酒酵母α-信号肽序列,定向重组到整合型表达载体pδRCMB中,并在CICC1346中实现分泌表达;然后通过同源建模、利用分子模拟软件Discovery Studio 4.1分析其蛋白结构,以对硝基苯-α-D-葡萄糖吡喃苷(pNPG)为底物,建立并确定酶活反应条件,并进行纯化、酶学性质分析;将密码子优化后序列在CICC1346中实现分泌表达,利用淀粉进行共发酵实验。结果显示:重组酶突变后相对野生型蛋白结构无影响。SDS-PAGE分析重组重组酶大小约为70 kDa;优化后最高酶活达到0.69 U/m L,重组酶最适pH为6.5,在pH4.5.0~7.0维持90%以上的酶活;最适温度为40℃,在30~40℃维持接近100%的酶活;受Cu^(2+)和Mn^(2+)严格抑制;寡聚-1,6-葡萄糖苷酶与α-淀粉酶及糖化酶协同利用淀粉产乙醇,提高淀粉水解效率。这是首次报道黄曲霉的寡聚-1,6-葡萄糖苷酶基因在酿酒酵母整合型分泌表达。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572201 and 91634202)
文摘Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement range when measuring granular flows with large bulk density and high-speed contrast.In this study,a novel PTV method is introduced to solve these problems using an optical flow matching algorithm with two further processing steps.The first step involves displacement correction,which is used to solve the mismatching problem in the case of high stacking density.The other step is trajectory splicing,which is used to solve the problem of a measurement range reduction in the case of high-speed contrast The hopper flow experimental results demonstrate superior performance of this proposed method in controlling the number of mismatched particles and better measuring efficiency in comparison with the traditional PTV method.
基金supported by the Ministry of Science and Technology of China (2019YFA0802103)the National Natural Science Foundation of China (31900804, 31960179)+1 种基金the Department of Science and Technology of Zhejiang Province (2021C03104)the Science and Technology Commission of Shanghai Municipality (19140903500)
文摘Dear Editor,Autophagy is an evolutionarily conserved catabolic process that involves the sequestration and transport of organelles,macromolecules,or invading microorganisms to lysosomes for degradation[1].Sequestosome 1(p62/SQSTM1)was the first protein shown to bind target-associated ubiquitin(Ub)and LC3 conjugated to the phagophore membrane,thus,acting as an important autophagy receptor for ubiquitinated targets[2].
文摘近日,胃肠病学和肝脏病学领域顶级期刊Gut(影响因子16.658)在线发表了浙江大学基础医学院、中国药科大学校长来茂德教授团队的最新研究成果——SRSF6-regulated alternative splicing that promotes tumour progression offers a therapy target for colorectal cancer。来茂德教授和张红河副教授为共同通信作者。
基金supported by grants from the National Key Research and Development Program of China(2021YFF1201300)the National Natural Science Foundation of China(81872280,82073094)+2 种基金the CAMS Innovation Fund for Medical Sciences(CIFMS)(2021-I2M-1-014)the Open Issue of State Key Laboratory of Molecular Oncology(SKL-KF-2021-16)the Independent Issue of State Key Laboratory of Molecular Oncology(SKL-2021-16).
文摘Background:The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms,among which transcriptional regulation is one of the most important components.Alternative splicing dramatically expands the regulatory network by producing transcript isoforms of genes to exquisitely control the cell cycle.However,the patterns of transcript isoform expression in the cell cycle are unclear.Therapies targeting cell cycle checkpoints are commonly used as anticancer therapies,but none of them have been designed or evaluated at the alternative splicing transcript level.The utility of these transcripts as markers of cell cycle-related drug sensitivity is still unknown,and studies on the expression patterns of cell cycle-targeting drug-related transcripts are also rare.Methods:To explore alternative splicing patterns during cell cycle progression,we performed sequential transcriptomic assays following cell cycle synchronization in colon cancer HCT116 and breast cancer MDA-MB-231 cell lines,using flow cytometry and reference cell cycle transcripts to confirm the cell cycle phases of samples,and we developed a new algorithm to describe the periodic patterns of transcripts fluctuating during the cell cycle.Genomics of Drug Sensitivity in Cancer(GDSC)drug sensitivity datasets and Cancer Cell Line Encyclopedia(CCLE)transcript datasets were used to assess the correlation of genes and their transcript isoforms with drug sensitivity.We identified transcripts associated with typical drugs targeting cell cycle by determining correlation coefficients.Cytotoxicity assays were used to confirm the effect of ENST00000257904 against cyclin dependent kinase 4/6(CDK4/6)inhibitors.Finally,alternative splicing transcripts associated with mitotic(M)phase arrest were analyzed using an RNA synthesis inhibition assay and transcriptome analysis.Results:We established high-resolution transcriptome datasets of synchronized cell cycle samples from colon cancer HCT116 and breast cancer MDA-MB-231 cells.The results of the cell cycle assessment showed that 43,326,41,578 and 29,244 transcripts were found to be periodically expressed in HeLa,HCT116 and MDA-MB-231 cells,respectively,among which 1280 transcripts showed this expression pattern in all three cancer cell lines.Drug sensitivity assessments showed that a large number of these transcripts displayed a higher correlation with drug sensitivity than their corresponding genes.Cell cycle-related drug screening showed that the level of the CDK4 transcript ENST00000547281 was more significantly associated with the resistance of cells to CDK4/6 inhibitors than the level of the CDK4 reference transcript ENST00000257904.The transcriptional inhibition assay following M phase arrest further confirmed the M-phase-specific expression of the splicing transcripts.Combined with the cell cycle-related drug screening,the results also showed that a set of periodic transcripts,for example,ENST00000314392(a dolichylphosphate mannosyltransferase polypeptide 2 isoform transcript),was more associated with drug sensitivity than the levels of their corresponding gene transcripts.Conclusions:In summary,we identified a panel of cell cycle-related periodic transcripts and found that the levels of transcripts of drug target genes showed different values for predicting drug sensitivity,providing novel insights into alternative splicing-related drug development and evaluation.
基金support by the Aerospace Research Project of China under Grant No.020202。
文摘To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.