To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solutio...To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solution was mathematically defined,and then calculated by Monte Carlo sampling method.Thirdly,the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems,to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly,using response surface model,a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally,based on a multi-objective genetic optimization algorithm,a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump,it is found that the internal flow field of the optimized pump has been improved under various operating conditions,the hydraulic performance has been improved consequently,and the range of high efficient zone has also been widened.Besides,with the changing of working conditions,the change trend of the hydraulic performance of the optimized pump becomes gentler,the flow field distribution is more uniform,and the influence degree of the varia-tion of working conditions decreases,and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump,and provides references for optimization problems of other fluid machinery.展开更多
A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence ...A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence model under different operating conditions to investigate the relationship between the impeller specific speed and the pump performance as well as pressure pulsations.Meanwhile,the pump performance and pressure pulsations inside the mixed-flow pump with three different specific speeds were also analyzed and compared with the corresponding test data.From the results,the averaged deviations between the predicted and tested head among different impellers are below 5%,and with respect to the equivalent impeller specific speeds of 280 and 260,the values are 4.30%and 3.69%,respectively.For all the impeller schemes,the best efficiency point of the mixed-flow pump is found at the flow rate of 1.2 Q_(d) and the higher head deviation occurs at lower flow rates.Especially,it can be found that the specific speed has a slight effect on the pressure fluctuation in the impellers.Eventually,it is determined that the pump performance curves calculated by numerical simu-lations have good agreement with the relevant experimental results,which verifies that the numerical methods used in the present study are accurate to a certain extent.Furthermore,the results also provide some references to the pressure pulsation analysis and the performance improvement of the mixed-flow pump design.展开更多
基金National Natural Science Foundation of China(51609107)Open Subject of Provincial and Ministerial Discipline Platform of Xihua University(szjj2018-123)。
文摘To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solution was mathematically defined,and then calculated by Monte Carlo sampling method.Thirdly,the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems,to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly,using response surface model,a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally,based on a multi-objective genetic optimization algorithm,a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump,it is found that the internal flow field of the optimized pump has been improved under various operating conditions,the hydraulic performance has been improved consequently,and the range of high efficient zone has also been widened.Besides,with the changing of working conditions,the change trend of the hydraulic performance of the optimized pump becomes gentler,the flow field distribution is more uniform,and the influence degree of the varia-tion of working conditions decreases,and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump,and provides references for optimization problems of other fluid machinery.
基金National Natural Science Foundation of China(51976078)Senior Personnel Scientific Research Foundation of Jiangsu University:(15JDG073)Open Research Subject of Key Laboratory of Fluid and Power Machinery,Ministry of Education(szjj2016-065)。
文摘A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence model under different operating conditions to investigate the relationship between the impeller specific speed and the pump performance as well as pressure pulsations.Meanwhile,the pump performance and pressure pulsations inside the mixed-flow pump with three different specific speeds were also analyzed and compared with the corresponding test data.From the results,the averaged deviations between the predicted and tested head among different impellers are below 5%,and with respect to the equivalent impeller specific speeds of 280 and 260,the values are 4.30%and 3.69%,respectively.For all the impeller schemes,the best efficiency point of the mixed-flow pump is found at the flow rate of 1.2 Q_(d) and the higher head deviation occurs at lower flow rates.Especially,it can be found that the specific speed has a slight effect on the pressure fluctuation in the impellers.Eventually,it is determined that the pump performance curves calculated by numerical simu-lations have good agreement with the relevant experimental results,which verifies that the numerical methods used in the present study are accurate to a certain extent.Furthermore,the results also provide some references to the pressure pulsation analysis and the performance improvement of the mixed-flow pump design.