期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
改进CycleGAN的半监督建筑物提取算法
1
作者 卢鹏 仲闯 《计算机工程》 北大核心 2025年第3期241-251,共11页
建筑物提取需要大量的标注数据进行训练,收集和标注数据需要耗费大量时间。为了在小样本遥感图像数据集上基于半监督学习实现建筑物提取的目的,构建4组建筑物提取数据集,提出了一种基于循环一致性生成对抗网络(CycleGAN)的建筑物提取算... 建筑物提取需要大量的标注数据进行训练,收集和标注数据需要耗费大量时间。为了在小样本遥感图像数据集上基于半监督学习实现建筑物提取的目的,构建4组建筑物提取数据集,提出了一种基于循环一致性生成对抗网络(CycleGAN)的建筑物提取算法。首先,在生成器中引入全局注意力机制(GAM)以增强对建筑物和图像背景细节特征的区分;其次,在判别器中加入谱归一化层以增强训练稳定性,解决了训练过程中梯度消失问题;最后,改进对抗损失和循环一致性损失以提高生成图像的质量,避免生成图像的过度平滑化,并引入Identity损失以限制生成器不会自主修改输入图像的颜色,保证输入图像与输出图像颜色组成的一致性。实验结果表明,在第1组小样本数据集上,与UNIT、MUNIT、U-GAT-IT、SPatchGAN、QS-Attn模型进行半监督实验对比,结构相似性(SSIM)值和准确率分别至少提高了3、8.1百分点,在扩充数据规模的数据集上,使用改进后的算法进行全监督和半监督实验对比,验证了改进后的算法在小样本遥感图像数据集上实现建筑物半监督提取的有效性。 展开更多
关键词 建筑物提取 循环一致性生成对抗网络 谱归一化 全局注意力机制 半监督
在线阅读 下载PDF
基于BN优化SNGAN的自适应音频隐写 被引量:3
2
作者 岳峰 朱慧 +1 位作者 苏兆品 张国富 《计算机学报》 EI CAS CSCD 北大核心 2022年第2期427-440,共14页
音频隐写术是将秘密信息(如文本、图像、音频、视频等)隐藏到载体音频中,不仅能够保证秘密信息本身的安全,而且能保证秘密信息传输的安全,已成为信息隐藏领域的研究热点之一.近年来,基于深度学习的音频隐写分析技术能够在充分挖掘隐写... 音频隐写术是将秘密信息(如文本、图像、音频、视频等)隐藏到载体音频中,不仅能够保证秘密信息本身的安全,而且能保证秘密信息传输的安全,已成为信息隐藏领域的研究热点之一.近年来,基于深度学习的音频隐写分析技术能够在充分挖掘隐写深度特征的基础上实现高效的隐写检测,导致隐写术的安全性降低,为隐写术带来了新的挑战.不过,生成对抗网络(Generative Adversarial Networks,GAN)的迅速发展,为音频隐写提供了一个新的解决思路.但是,现有基于GAN的音频隐写在隐藏容量、不可感知性、抗检测性上很难达到均衡,不能满足实际应用需求.为此,本文在网络结构单元上将批处理归一化与频谱归一化相结合,提出了一种基于优化频谱归一化GAN的自适应音频隐写方法(Batch Normalization optimized Spectral Normalization GAN,BNSNGAN).具体来说,首先设计了一种隐写编码器,基于时域补零法对秘密音频进行预处理,实现了任意长度秘密音频的嵌入,提高了音频隐写的不可感知性;其次设计了一种具有并行结构的隐写提取器,用不同的卷积核进行去卷积,提高了秘密信息提取的准确率;最后设计了一种以交叉熵为损失函数的隐写分析器,提高了音频隐写的抗检测性.对比实验结果表明,通过编码器、提取器和隐写分析器这三个网络的互相学习,本文所提BNSNGAN不仅可以实现任意长度秘密音频的嵌入,具有较高的秘密信息提取率,并且在隐写容量、不可感知性和抗检测性上可以达到一个较好的均衡. 展开更多
关键词 音频隐写 生成对抗网络 频谱归一化 批处理归一化 自适应隐写
在线阅读 下载PDF
计及新能源并网的火储联合调峰运行优化研究 被引量:2
3
作者 米阳 何进 +3 位作者 卢长坤 符杨 陈晨 齐桓若 《中国电机工程学报》 北大核心 2025年第5期1704-1715,I0006,共13页
针对负荷需求增加和不确定新能源并网导致的调峰压力,提出一种储能与火电机组联合调峰的双层运行方法模型上层兼顾储能配置和火电机组灵活性改造,目标函数为系统的综合收益,同时为了调动储能参与调峰的积极性,提出基于储能寿命模型的补... 针对负荷需求增加和不确定新能源并网导致的调峰压力,提出一种储能与火电机组联合调峰的双层运行方法模型上层兼顾储能配置和火电机组灵活性改造,目标函数为系统的综合收益,同时为了调动储能参与调峰的积极性,提出基于储能寿命模型的补偿策略;模型下层以典型日运行状况为决策变量,目标函数为兼顾新能源消纳的系统运行成本;进而,采用谱归一化生成对抗网络和K-medoids算法生成典型场景来提高模型精度,并且通过时间相关性分析以及与历史数据的对比凸显谱归一化生成对抗网络的优势;最后,仿真算例表明,所提方法可以有效兼顾系统的经济性与新能源消纳能力。 展开更多
关键词 火储联合调峰 火电灵活性改造 双层模型 谱归一化生成对抗网络
在线阅读 下载PDF
基于拆分注意力网络的单图像超分辨率重建
4
作者 彭晏飞 刘蓝兮 +2 位作者 王刚 孟欣 李泳欣 《液晶与显示》 CAS CSCD 北大核心 2024年第7期950-960,共11页
针对现有生成对抗网络的单图像超分辨率重建在大尺度因子下存在训练不稳定、特征提取不足和重建结果纹理细节严重缺失的问题,提出一种拆分注意力网络的单图超分辨率重建方法。首先,以拆分注意力残差模块作为基本残差块构造生成器,提高... 针对现有生成对抗网络的单图像超分辨率重建在大尺度因子下存在训练不稳定、特征提取不足和重建结果纹理细节严重缺失的问题,提出一种拆分注意力网络的单图超分辨率重建方法。首先,以拆分注意力残差模块作为基本残差块构造生成器,提高生成器特征提取的能力。其次,在损失函数中引入鲁棒性更好的Charbonnier损失函数和Focal Frequency Loss损失函数代替均方差损失函数,同时加入正则化损失平滑训练结果,防止图像过于像素化。最后,在生成器和判别器中采用谱归一化处理,提高网络的稳定性。在4倍放大因子下,与其他方法在Set5、Set14、BSDS100、Urban100测试集上进行测试比较,本文方法的峰值信噪比比其他对比方法的平均值提升1.419 dB,结构相似性比其他对比方法的平均值提升0.051。实验数据和效果图表明,该方法主观上具有丰富的细节和更好的视觉效果,客观上具有较高的峰值信噪比值和结构相似度值。 展开更多
关键词 超分辨率 生成对抗网络 谱归一化 拆分注意力网络
在线阅读 下载PDF
基于双向循环生成对抗网络的无线传感网入侵检测方法 被引量:26
5
作者 刘拥民 杨钰津 +2 位作者 罗皓懿 黄浩 谢铁强 《计算机应用》 CSCD 北大核心 2023年第1期160-168,共9页
针对无线传感器网络(WSN)入侵检测方法在离散高维特征的不平衡数据集上检测精度低和泛化能力差的问题,提出一种基于双向循环生成对抗网络的WSN入侵检测方法 BiCirGAN。首先,引入对抗学习异常检测(ALAD)通过潜在空间合理地表示高维、离... 针对无线传感器网络(WSN)入侵检测方法在离散高维特征的不平衡数据集上检测精度低和泛化能力差的问题,提出一种基于双向循环生成对抗网络的WSN入侵检测方法 BiCirGAN。首先,引入对抗学习异常检测(ALAD)通过潜在空间合理地表示高维、离散的原始特征,提高对原始特征的可理解性。其次,采用双向循环对抗的结构确保真实空间和潜在空间双向循环的一致性,从而保证生成对抗网络(GAN)训练的稳定性,并提高异常检测的性能。同时,引入Wasserstein距离和谱归一化优化方法改进GAN的目标函数,以进一步解决GAN的模式崩坏与生成器缺乏多样性的问题。最后,由于入侵攻击数据的统计属性随时间以不可预见的方式变化,建立带有Dropout操作的全连接层网络对异常检测结果进行优化。实验结果表明,在KDD99、UNSW-NB15和WSN_DS数据集上,相较于AnoGAN、BiGAN、MAD-GAN以及ALAD方法,BiCirGAN在检测精确度上提高了3.9%~33.0%,且平均推断速度是ALAD方法的4.67倍。 展开更多
关键词 无线传感器网络 入侵检测 生成对抗网络 谱归一化 对抗学习
在线阅读 下载PDF
基于改进DCGAN的数据增强方法 被引量:26
6
作者 甘岚 沈鸿飞 +1 位作者 王瑶 张跃进 《计算机应用》 CSCD 北大核心 2021年第5期1305-1313,共9页
针对小样本数据在深度学习中训练难的问题,为提高DCGAN训练效率,提出了一种改进的DCGAN算法对小样本数据进行增强。首先,使用Wasserstein距离替换原模型中的损失模型;其次,在生成网络和判别网络中加入谱归一化,以得到稳定的网络结构;最... 针对小样本数据在深度学习中训练难的问题,为提高DCGAN训练效率,提出了一种改进的DCGAN算法对小样本数据进行增强。首先,使用Wasserstein距离替换原模型中的损失模型;其次,在生成网络和判别网络中加入谱归一化,以得到稳定的网络结构;最后,通过极大似然估计算法和实验估算得到样本的最佳噪声输入维度,从而提高生成样本的多样性。在MNIST、Celeb A和Cartoon这三个数据集上的实验结果表明:改进后的DCGAN所生成样本的清晰度以及识别率比改进前均得到了明显提高,其中平均识别率在这几个数据集上分别提高了8.1%、16.4%和16.7%,几种清晰度评价指标在各数据集上均有不同程度的提高。可见该方法能够有效地实现小样本数据增强。 展开更多
关键词 小样本 数据增强 DCGAN Wasserstein距离 谱归一化 内在维数
在线阅读 下载PDF
基于谱归一化条件生成对抗网络的图像修复算法 被引量:11
7
作者 雷蕾 郭东恩 靳峰 《计算机工程》 CAS CSCD 北大核心 2021年第1期230-238,共9页
基于生成对抗网络的图像修复算法在修复大尺寸缺失图像时,存在图像失真较多与判别网络性能不可控等问题,基于谱归一化条件生成对抗网络,提出一种新的图像修复算法。引入谱归一化来约束判别网络的判别性能,间接提高修复网络的修复能力,... 基于生成对抗网络的图像修复算法在修复大尺寸缺失图像时,存在图像失真较多与判别网络性能不可控等问题,基于谱归一化条件生成对抗网络,提出一种新的图像修复算法。引入谱归一化来约束判别网络的判别性能,间接提高修复网络的修复能力,并根据控制判别网络性能对谱归一化进行理论分析。通过类别信息约束特征生成,保证修复图像的内容不变性,引入扩展卷积算子对待修复图像进行像素级操作,解决修复图像缺乏局部一致性的问题。在此基础上,运用PSNR、SSIM等图像评价方法及分片Wasserstein距离、Inception分数、流形距离度量、GAN-train和GAN-test等流形结构相似度评价指标对修复图像进行综合评价。实验结果表明,与CE、GL等算法相比,该算法获得的修复图像在主观感受和客观评价指标上均有明显提高。 展开更多
关键词 谱归一化 条件生成对抗网络 图像修复 判别性能 图像评价
在线阅读 下载PDF
面向低剂量CT图像的多生成器对抗网络降噪模型的研究 被引量:5
8
作者 裴颂文 樊静 +1 位作者 沈天马 顾春华 《小型微型计算机系统》 CSCD 北大核心 2020年第12期2582-2587,共6页
针对低剂量计算机断层扫描将导致扫描图像噪声高的问题,本文提出了一种用于图像降噪的多生成器的生成对抗网络(TriGAN)模型.首先提出了三个生成器的并行结构对不同类型噪声进行有针对性的图像降噪;其次引入残差网络,避免梯度消失等问题... 针对低剂量计算机断层扫描将导致扫描图像噪声高的问题,本文提出了一种用于图像降噪的多生成器的生成对抗网络(TriGAN)模型.首先提出了三个生成器的并行结构对不同类型噪声进行有针对性的图像降噪;其次引入残差网络,避免梯度消失等问题,保证训练阶段的稳定和高效;最后,利用谱归一化方法解决生成对抗网络在训练过程中可能出现的模式坍塌和慢收敛的问题.实验结果表明,TriGAN和其他深度学习模型DnCNN和GAN等相比较,图像的峰值信噪比达到26.67,平均提高了4.5%;结构相似性达到0.98,平均提高了1.5%.此外,采用TriGAN模型降噪后的断层扫描图像亨氏单位的平均值为32.61,标准差为58.91,最接近标准剂量CT样本图像的断层扫描数. 展开更多
关键词 生成对抗网络 图像降噪 谱归一化 残差网络
在线阅读 下载PDF
改进生成对抗网络实现红外与可见光图像融合 被引量:11
9
作者 闵莉 曹思健 +1 位作者 赵怀慈 刘鹏飞 《红外与激光工程》 EI CSCD 北大核心 2022年第4期395-404,共10页
红外与可见光图像融合技术能够同时提供红外图像的热辐射信息和可见光图像的纹理细节信息,在智能监控、目标探测和跟踪等领域具有广泛的应用。两种图像基于不同的成像原理,如何融合各自图像的优点并保证图像不失真是融合技术的关键,传... 红外与可见光图像融合技术能够同时提供红外图像的热辐射信息和可见光图像的纹理细节信息,在智能监控、目标探测和跟踪等领域具有广泛的应用。两种图像基于不同的成像原理,如何融合各自图像的优点并保证图像不失真是融合技术的关键,传统融合算法只是叠加图像信息而忽略了图像的语义信息。针对该问题,提出了一种改进的生成对抗网络,生成器设计了局部细节特征和全局语义特征两路分支捕获源图像的细节和语义信息;在判别器中引入谱归一化模块,解决传统生成对抗网络不易训练的问题,加速网络收敛;引入了感知损失,保持融合图像与源图像的结构相似性,进一步提升了融合精度。实验结果表明,提出的方法在主观评价与客观指标上均优于其他代表性方法,对比基于全变分模型方法,平均梯度和空间频率分别提升了55.84%和49.95%。 展开更多
关键词 图像融合 生成对抗网络 语义信息 谱归一化
在线阅读 下载PDF
基于生成对抗网络的图像风格迁移 被引量:1
10
作者 刘航 李明 +2 位作者 李莉 付登豪 徐昌莉 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第5期514-523,共10页
生成对抗网络(Generative Adversarial Network,GAN)可以生成和真实图像较接近的生成图像.作为深度学习中较新的一种图像生成模型,GAN在图像风格迁移中发挥着重要作用.针对当前生成对抗网络模型中存在的生成图像质量较低、模型较难训练... 生成对抗网络(Generative Adversarial Network,GAN)可以生成和真实图像较接近的生成图像.作为深度学习中较新的一种图像生成模型,GAN在图像风格迁移中发挥着重要作用.针对当前生成对抗网络模型中存在的生成图像质量较低、模型较难训练等问题,提出了新的风格迁移方法,有效改进了BicycleGAN模型实现图像风格迁移.为了解决GAN在训练中容易出现的退化现象,将残差模块引入GAN的生成器,并引入自注意力机制,获得更多的图像特征,提高生成器的生成质量.为了解决GAN在训练过程中的梯度爆炸现象,在判别器每一个卷积层后面加入谱归一化.为了解决训练不够稳定、生成图像质量低的现象,引入感知损失.在Facades和AerialPhoto&Map数据集上的实验结果表明,该方法的生成图像的PSNR值和SSIM值高于同类比较方法. 展开更多
关键词 生成对抗网络 风格迁移 自注意力机制 谱归一化 感知损失
在线阅读 下载PDF
谱归一化CycleGAN的轴承故障迁移诊断研究 被引量:1
11
作者 李洁松 刘韬 伍星 《振动与冲击》 EI CSCD 北大核心 2023年第24期282-289,共8页
深度学习无需先验特征提取的优点使其受到了工业设备的智能故障诊断领域研究的青睐,但深度学习的低鲁棒性和较高的数据要求阻碍其实际应用。为适应在工业现场复杂多变的工况,该文提出了一种基于谱归一化(spectral normalization, SN)和... 深度学习无需先验特征提取的优点使其受到了工业设备的智能故障诊断领域研究的青睐,但深度学习的低鲁棒性和较高的数据要求阻碍其实际应用。为适应在工业现场复杂多变的工况,该文提出了一种基于谱归一化(spectral normalization, SN)和循环一致对抗网络(cycle-consistent adversarial networks, CycleGAN)的SN-1DCycleGAN网络用于变工况条件下的故障数据迁移生成和诊断。首先,搭建一种适应振动数据生成的1DCycleGAN网络,用于获得同种工况下正常信号与故障信号的映射关系。使用谱归一化对网络进行改进,有效的防止CycleGAN网络训练过程中训练不稳定情况。其次,通过不同工况的正常数据生成自适应的故障数据,实现变工况迁移生成的目的。最后,3种评价指标以及分类器准确率对数据生成质量进行定量评估,并使用仿真与试验信号进行验证。试验结果表明,SN-1DCycleGAN在一维振动信号上具备一定迁移效果,可对变工况数据进行增强,提升分类器的准确率。 展开更多
关键词 智能故障诊断 循环一致对抗网络 谱归一化 变工况迁移生成
在线阅读 下载PDF
基于生成对抗网络的无监督图像风格迁移 被引量:6
12
作者 兰天 辛月兰 +2 位作者 殷小芳 刘卫铭 姜星宇 《计算机工程与科学》 CSCD 北大核心 2021年第10期1789-1795,共7页
无监督的图像风格迁移是计算机视觉领域中一个非常重要且具有挑战性的问题。无监督的图像风格迁移旨在通过给定类的图像映射到其他类的类似图像。一般情况下成对匹配的数据集很难获得,这极大限制了图像风格迁移的转换模型。因此,为了避... 无监督的图像风格迁移是计算机视觉领域中一个非常重要且具有挑战性的问题。无监督的图像风格迁移旨在通过给定类的图像映射到其他类的类似图像。一般情况下成对匹配的数据集很难获得,这极大限制了图像风格迁移的转换模型。因此,为了避免这种限制,对现有的无监督的图像风格迁移的方法进行改进,采用改进的循环一致性对抗网络进行无监督图像风格迁移。首先为了提升网络的训练速度,避免梯度消失的现象出现,在传统的循环一致性网络生成器部分引入DenseNet网络;在提高生成器的性能方面,生成器网络部分引入attention机制来输出效果更好的图像;为了减少网络的结构风险,在网络的每一个卷积层都使用谱归一化。为了验证本文方法的有效性,在monet2photo、vangogh2photo和facades数据集上进行了实验,实验结果表明,该方法在Inception score平均分数和FID距离评价指标上均有所提高。 展开更多
关键词 风格迁移 生成对抗网络 attention机制 谱归一化
在线阅读 下载PDF
一种基于谱归一化的两阶段堆叠结构生成对抗网络的文本生成图像模型 被引量:3
13
作者 王霞 徐慧英 朱信忠 《计算机工程与科学》 CSCD 北大核心 2022年第6期1083-1089,共7页
文本生成图像是机器学习领域非常具有挑战性的任务,虽然目前已经有了很大突破,但仍然存在模型训练不稳定以及梯度消失等问题。针对这些不足,在堆叠生成对抗网络(StackGAN)基础上,提出一种结合谱归一化与感知损失函数的文本生成图像模型... 文本生成图像是机器学习领域非常具有挑战性的任务,虽然目前已经有了很大突破,但仍然存在模型训练不稳定以及梯度消失等问题。针对这些不足,在堆叠生成对抗网络(StackGAN)基础上,提出一种结合谱归一化与感知损失函数的文本生成图像模型。首先,该模型将谱归一化运用到判别器网络中,将每层网络梯度限制在固定范围内,相对减缓判别器网络的收敛速度,从而提高网络训练的稳定性;其次,将感知损失函数添加到生成器网络中,增强文本语义与图像内容的一致性。使用Inception score评估所提模型生成图像的质量。实验结果表明,该模型与原始StackGAN相比,具有更好的稳定性且生成图像更加逼真。 展开更多
关键词 深度学习 生成对抗网络 文本生成图像 谱归一化 感知损失函数
在线阅读 下载PDF
结合频谱规范化与自注意力机制的DCGAN研究 被引量:2
14
作者 李秋丽 马力 《计算机应用与软件》 北大核心 2021年第2期227-232,290,共7页
针对基于深度卷积对抗式生成网络的图像生成方法存在训练过程稳定性亟待提高、图像生成质量效果欠佳等问题,提出一种将频谱规范化、自注意力机制与深度卷积对抗式生成网络结合的图像生成方法。在网络结构中,将频谱规范化的权重标准技术... 针对基于深度卷积对抗式生成网络的图像生成方法存在训练过程稳定性亟待提高、图像生成质量效果欠佳等问题,提出一种将频谱规范化、自注意力机制与深度卷积对抗式生成网络结合的图像生成方法。在网络结构中,将频谱规范化的权重标准技术引入判别器,使判别器的参数矩阵满足Lipschitz约束,提高网络模型训练过程的稳定性;将自注意力机制引入生成器,使网络有目的地学习,得到质量更好的图像。实验结果证明,该方法相比目前的生成模型在CelebA、Cartooon数据集上能够有效地提高模型的收敛速度、训练稳定性和图像生成效果。 展开更多
关键词 深度卷积对抗式生成网络 生成对抗网络 图像生成 频谱规范化 Lipschitz约束 自注意力机制
在线阅读 下载PDF
基于线性注意力机制的单样本生成对抗网络研究 被引量:1
15
作者 陈曦 赵红东 +3 位作者 杨东旭 徐柯南 任星霖 封慧杰 《计算机工程与科学》 CSCD 北大核心 2022年第11期2056-2063,共8页
目前,使用单样本训练生成对抗网络已经成为研究人员关注的重点。但是,网络模型不容易收敛,生成的图像结构易崩塌,训练速度慢等问题依旧亟待解决。研究人员提出在生成对抗网络中使用自注意力模型用以获取样本更大范围的结构,提高生成图... 目前,使用单样本训练生成对抗网络已经成为研究人员关注的重点。但是,网络模型不容易收敛,生成的图像结构易崩塌,训练速度慢等问题依旧亟待解决。研究人员提出在生成对抗网络中使用自注意力模型用以获取样本更大范围的结构,提高生成图像的质量。但是,传统的卷积自注意力模型由于注意力图谱中的信息冗余,容易造成计算资源浪费。提出了一种新的线性注意力模型,在该模型中使用了双重归一化方法来缓解注意力模型对输入特征敏感的问题,并且基于该模型搭建了一种新的单样本生成对抗网络模型。此外,模型还使用了残差网络和光谱归一化方法用于稳定训练,降低了发生崩塌的风险。实验结果表明,相较于使用已有的网络结构,该模型具有训练速度快,生成图像的分辨率高且评价指标改善明显等特点。 展开更多
关键词 生成对抗网络 单样本 线性注意力模型 自注意力机制 光谱归一化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部