This paper is concerned with the control synthesis problem via dynamic output feedback for linear continuous-time systems with mixed frequency small gain specifications.A new method for designing dynamic output feedba...This paper is concerned with the control synthesis problem via dynamic output feedback for linear continuous-time systems with mixed frequency small gain specifications.A new method for designing dynamic output feedback controllers is presented such that the resulting closed-loop systems are asymptotically stable and meet the requirements of small gain specifications in both finite frequency ranges and the entire frequency range.The design conditions are given in terms of solutions to a set of linear matrix inequalities(LMIs).Finally,a numerical example is given to illustrate the design procedure and the advantage of the proposed method in comparison with the existing one.展开更多
基金Supported by Program for New Century Excellent Talents in University(NCET-04-0283)the Funds for Creative Research Groups of China(60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT0421)the State Key Program of National Natural Science Foundation of China(60534010)and National Natural Science Foundation of China(60674021)the Funds of Ph.D.Program of Ministry of Education,China(20060145019)the 111 Project(B08015)
文摘This paper is concerned with the control synthesis problem via dynamic output feedback for linear continuous-time systems with mixed frequency small gain specifications.A new method for designing dynamic output feedback controllers is presented such that the resulting closed-loop systems are asymptotically stable and meet the requirements of small gain specifications in both finite frequency ranges and the entire frequency range.The design conditions are given in terms of solutions to a set of linear matrix inequalities(LMIs).Finally,a numerical example is given to illustrate the design procedure and the advantage of the proposed method in comparison with the existing one.