期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
A cloud model target damage effectiveness assessment algorithm based on spatio-temporal sequence finite multilayer fragments dispersion
1
作者 Hanshan Li Xiaoqian Zhang Junchai Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期48-64,共17页
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p... To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis. 展开更多
关键词 Target damage Cloud model Fragments dispersion Effectiveness assessment spatio-temporal sequence
在线阅读 下载PDF
Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model 被引量:20
2
作者 Naiming Xie Sifeng Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期96-102,共7页
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th... This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model. 展开更多
关键词 grey number grey system theory INTERVAL discrete grey forecasting model non-homogeneous exponential sequence
在线阅读 下载PDF
Multi-scale regionalization based mining of spatio-temporal teleconnection patterns between anomalous sea and land climate events
3
作者 XU Feng SHI Yan +3 位作者 DENG Min GONG Jian-ya LIU Qi-liang JIN Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2438-2448,共11页
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de... Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate. 展开更多
关键词 CLIMATE sequences ANOMALOUS climatic EVENTS spatio-temporal teleconnection patterns MULTI-SCALE REGIONALIZATION
在线阅读 下载PDF
基于多尺度时频域学习的多元长时间序列预测 被引量:1
4
作者 衡红军 李怡欣 《西安电子科技大学学报》 北大核心 2025年第2期128-142,共15页
针对现有多元长时间序列预测模型中存在的两个问题,一是仅利用单周期尺度时域信息无法捕捉序列的长期时间依赖关系,二是难以捕捉到有效的多元依赖关系。基于多层感知机,提出了一种基于多尺度时频域学习的多元长时间序列预测模型。模型... 针对现有多元长时间序列预测模型中存在的两个问题,一是仅利用单周期尺度时域信息无法捕捉序列的长期时间依赖关系,二是难以捕捉到有效的多元依赖关系。基于多层感知机,提出了一种基于多尺度时频域学习的多元长时间序列预测模型。模型首先基于傅里叶变换自适应寻找序列的不同周期作为多个尺度;然后针对每个尺度,通过序列分解,分别进行时域和频域两阶段的学习,获取序列的局部和全局时间依赖关系;随后再依据变量间的相关性分析结果,自适应建模多元序列的变量依赖关系;最后,对各尺度中不同的序列分解项应用不同的聚合方法,实现多尺度信息的互补融合。在七个真实数据集上的实验表明,该模型在超过90%的测试中位于最优或次优水平。与基于序列分解的线性模型DLinear相比,MSE实现了11%的平均降低和49.22%的最大降低,MAE实现了10%的平均降低和33.03%的最大降低。此外,模型在有效提升预测精度的同时,具有更高的运行效率。 展开更多
关键词 预测 时间序列 时频域 多尺度 序列分解 多层感知机
在线阅读 下载PDF
考虑时序特征缺失值动态插补的超短期风电功率预测
5
作者 李丹 唐建 +2 位作者 缪书唯 黄烽云 罗娇娇 《中国电机工程学报》 北大核心 2025年第17期6790-6803,I0015,共15页
风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据... 风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据存在缺失值的问题,设计嵌入时滞衰减插补策略的门控循环单元动态捕捉输入特征时间序列中缺失值前后观测值间的不规则时滞关系,并通过带掩码的自相关分析,确定输入特征的最佳时窗长度和时滞衰减率函数的初始参数;基于门控循环单元提取的时序信息,进一步构建序列到序列的预测结构,协调历史和预测时刻输入特征维度不一致的问题,输出未来15 min~4 h的风电功率预测序列。实验结果表明,所提方法在风电数据含缺失值的情景下,与传统的缺失值处理和预测方法相比,具有更高的预测精度和更稳定的预测性能。 展开更多
关键词 超短期风电功率预测 时序特征缺失值 自相关分析 时滞衰减率函数 序列到序列模型
在线阅读 下载PDF
基于ALIF-VMD二次分解的NGO-CNN-LSTM电力负荷短期组合预测模型 被引量:2
6
作者 张琳 高胜强 +2 位作者 宋煜 卜帅羽 余伟 《科学技术与工程》 北大核心 2025年第11期4583-4597,共15页
针对电力负荷预测过程中普遍存在的负荷波动变化趋势明显、随机性强,以及预测模型的参数取值不合理导致的精度偏低问题,提出了一种基于ALIF-VMD(adaptive local iterative filtering-variational mode decomposition)二次分解和北方苍... 针对电力负荷预测过程中普遍存在的负荷波动变化趋势明显、随机性强,以及预测模型的参数取值不合理导致的精度偏低问题,提出了一种基于ALIF-VMD(adaptive local iterative filtering-variational mode decomposition)二次分解和北方苍鹰优化算法(northern goshawk optimization, NGO)优化CNN-LSTM(convolutional neural networks-long short-term memory)的电力负荷组合预测模型,在使用交叉映射收敛方法(convergent cross-mapping, CCM)准确识别电力负荷的关键影响因素的基础上,创新性地联合使用ALIF、基于NGO的VMD和模糊熵(fuzzy entropy, FE)对原始负荷序列进行组合分解和必要的重组;针对分解和重组后生成的模态分量,结合NGO确定的CNN-LSTM模型最优超参数组合,建立预测精度高、训练时间短、收敛速度快的NGO-CNN-LSTM日前电力负荷组合预测模型。与其他基准模型的对比结果表明,该模型具有更好的适应性和预测精度,可为电力系统的安全、可靠、经济运行提供重要的技术支撑。 展开更多
关键词 负荷预测 序列分解与重组 北方苍鹰算法 卷积神经网络-长短期记忆神经网络模型
在线阅读 下载PDF
基于阶段式粒度重构的供水量分解集成预测模型
7
作者 白云 严政杰 +2 位作者 曾波 陈国强 谢晶晶 《运筹与管理》 北大核心 2025年第8期134-140,I0093-I0096,共11页
为提升城市供水量预测精度,基于“分而治之”和“粒度重构”的思想,本文提出了一种阶段式粒度重构的分解集成预测模型。首先,原始时间序列通过模态分解获得多个本征模态函数(Intrinsic Mode Functions,IMFs);然后,对IMFs开展阶段式粒度... 为提升城市供水量预测精度,基于“分而治之”和“粒度重构”的思想,本文提出了一种阶段式粒度重构的分解集成预测模型。首先,原始时间序列通过模态分解获得多个本征模态函数(Intrinsic Mode Functions,IMFs);然后,对IMFs开展阶段式粒度重构,即基于时频特征的第一次重构(识别不同粒度信息)与基于复杂度评估的第二次重构(提升高频粒度的表征度);最后,对阶段式重构的多粒度信息分别进行深度储备池建模并将预测结果集成。本文所提阶段式粒度重构方式提升了时序局部特征提取效果(特别是高频信息的特征),进而提升分解集成预测精度。实例研究表明,所提模型预测精度优于对比模型,可为城市日供水管理提供精准决策支持。 展开更多
关键词 时序分解 阶段式粒度重构 集成预测 供水量 深度储备池计算
在线阅读 下载PDF
基于改进卷积-门控网络及Informer的两种中长期风电功率预测方法 被引量:1
8
作者 任鑫 王一妹 +3 位作者 王华 周利 葛畅 韩爽 《现代电力》 北大核心 2025年第3期542-549,共8页
为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络... 为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络-门控循环单元(convolutional neural network-gate recurrent unit,CNN-GRU)的时间尺度降维模型,通过CNN模块及GRU模块分别实现了长时间序列的融合和还原,以及降维后时间序列的预测;另一方面,基于Informer网络的多头注意力机制实现了序列长期依赖特征的挖掘。算例结果表明,两种方法在不同的场景下有着不同的适应性,在第10日的准确率和合格率分别达到74.21%/73.47%、71.81%/74.48%,与常规GRU、CNN、时间卷积网络模型相比,预测精度提升明显,预测效果良好。 展开更多
关键词 中长期功率预测 长序列预测 卷积神经网络-门控循环单元 INFORMER 多头注意力
在线阅读 下载PDF
针对地震科考工作的可操作性余震概率预测及检验——以西藏定日M_(S)6.8地震为例
9
作者 张盛峰() 张永仙 《地震地质》 北大核心 2025年第3期835-849,共15页
2025年1月7日发生的西藏定日6.8级地震对当地经济和群众生命造成了重大灾害。震后,中国地震局围绕此次地震,采用不同学科手段开展了跟踪式分析的科考工作,其中序列特征分析和震后余震概率预测分析是一项重要且有意义的工作内容。为增进... 2025年1月7日发生的西藏定日6.8级地震对当地经济和群众生命造成了重大灾害。震后,中国地震局围绕此次地震,采用不同学科手段开展了跟踪式分析的科考工作,其中序列特征分析和震后余震概率预测分析是一项重要且有意义的工作内容。为增进对此次地震序列的认识并及时为科考工作提供支撑,文中针对震后7.1d已经积累的余震序列数据,采用时间ETAS模型,以0.1d为间隔进行了跟踪式分析,对未来1d进行余震短期概率预测,并使用描述概率预测结果与实际观测一致性的Brier评分方法对模型效能进行检验,获得以下主要认识:1)余震序列整体呈现贴近正常水平的衰减速率(p=1.06),触发产生的“子事件”比例不高(α=1.58),模型整体拟合情况与余震实际发生情况基本一致;2)模型参数从震后第2.8d开始趋于稳定,震后短时间内余震记录不全的问题会对模型拟合产生影响;3)该模型的预测曲线能够快速反映第6.5d发生的5.0级余震情况,显示出该模型对此类工作中余震短期预测较强的适应性和应用的潜在价值;4)针对以上跟踪式分析预测结果的Brier评分结果显示,该模型对3.5级、 4.0级和5.0级以上余震的预测优于随机预测(score<0.25),其中对4.5级和5.0级以上余震的预测效能随时间不断提升。文中探讨了将Brier评分方法应用于时间ETAS模型概率预测效能评估中的潜力,发现其在综合评估预测表现及预测能力随时间变化方面具有较大优势,该模型的可操作性预测框架对支撑地震科学考察和辅助地震决策具有重要价值,同时讨论了下一步开展此类工作需要解决的潜在问题。 展开更多
关键词 西藏定日M_(S)6.8地震 可操作的地震预测 传染型余震序列模型 余震概率预测 效能检验
在线阅读 下载PDF
基于改进STGCN与N-BEATS的风功率超短期预测
10
作者 程旭初 刘景霞 康荣凯 《现代电子技术》 北大核心 2025年第8期115-121,共7页
精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提... 精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提取数据时空特征来提高预测精度。首先,利用STGCN对多元输入序列进行深度特征提取,充分挖掘风机SCADA数据中的时空潜在关系;同时,为了进一步提高预测精度,通过构建序列分解模块与多分辨率卷积对STGCN模型进行改进,使其能够更好地适应风电数据的复杂特性;然后,神经基扩展分析(N-BEATS)新型神经网络对STGCN提取的时空信息数据进行时序关系分析,得到最终预测结果;最后,以内蒙古某风场SCADA数据为例,通过多模型对比实验与自身消融实验验证了所提组合模型策略的有效性以及对STGCN的改进效果。实验结果表明,所设计模型在预测精度上取得了显著的提升,为风电功率预测领域的研究提供了新的思路和方法。 展开更多
关键词 超短期风功率预测 时空图卷积 神经基扩展分析 序列分解 深度特征提取 图卷积网络
在线阅读 下载PDF
基于双重分解和双向长短时记忆网络的中长期负荷预测模型 被引量:12
11
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短时记忆网络 长序列处理
在线阅读 下载PDF
双路卷积神经网络和序列到序列的多步短期负荷预测 被引量:1
12
作者 袁建华 徐杰 +1 位作者 蒋文军 李洪强 《电力系统及其自动化学报》 CSCD 北大核心 2024年第9期96-104,共9页
为提高多步短期电力负荷预测精度,满足实际应用中对于不同时间长度的预测需求,提出一种双路卷积神经网络和序列到序列相结合的多步预测方法。首先,构造双支路并行结构的特征提取网络双路卷积神经网络对负荷输入数据进行不同尺度的深层... 为提高多步短期电力负荷预测精度,满足实际应用中对于不同时间长度的预测需求,提出一种双路卷积神经网络和序列到序列相结合的多步预测方法。首先,构造双支路并行结构的特征提取网络双路卷积神经网络对负荷输入数据进行不同尺度的深层次特征提取;其次,分别以双向门控循环单元和长短期记忆网络作为编码器和解码器构建序列到序列网络,利用编码器对双路卷积神经网络的输出特征进行编码,并引入注意力机制完成输入数据到动态变化的中间向量的信息转换;最后通过解码器解码实现未来多个时刻的负荷序列输出。实验结果表明,所提方法较其他方法具有更优的多步预测性能。 展开更多
关键词 负荷预测 多步预测 序列到序列 深度学习 注意力机制
在线阅读 下载PDF
基于需求模式自适应匹配的间歇性需求预测方法 被引量:1
13
作者 范黎林 曹富康 +2 位作者 王琬婷 杨凯 宋钊瑜 《计算机应用》 CSCD 北大核心 2024年第9期2747-2755,共9页
大型制造企业售后配件的需求分布稀疏、波动性大,需求频率和需求数量不确定性较高,序列呈现出典型的间歇性特点。在实际运维中,配件需求在频率和数量方面存在较大波动,从而产生变化多样的需求模式,而现有间歇性需求预测主要采用单一或... 大型制造企业售后配件的需求分布稀疏、波动性大,需求频率和需求数量不确定性较高,序列呈现出典型的间歇性特点。在实际运维中,配件需求在频率和数量方面存在较大波动,从而产生变化多样的需求模式,而现有间歇性需求预测主要采用单一或静态组合的固定预测模型,难以充分挖掘不同需求模式下需求序列的演化规律,预测精度和稳定性均难以保证。为解决上述问题,提出一种基于需求模式自适应匹配的间歇性需求预测方法,通过动态识别和匹配需求模式提升间歇性序列预测效果。该方法包括两个阶段:在模型训练阶段,首先,根据配件历史需求数据的间歇性特征,将它划分为需求量序列和间隔量序列,并对两类序列分别进行聚类,以捕获每类序列对应的不同需求和间隔模式;其次,建立包含统计学分析模型、浅层机器学习模型及深度学习模型的预测模型库,测试各模型对每种需求模式的预测效果,识别并标记每类需求模式的最优预测模型。在预测阶段,将待预测序列划分为需求量序列和间隔量序列,确定需求模式并匹配最佳预测模型,进而将需求量和间隔量的预测值合并,形成最终预测结果。在美国汽车公司和英国空军的间歇性配件需求数据集上的实验结果表明,所提方法可适用于不同需求模式的配件历史数据,通过自适应匹配需求模式和最优预测模型,有效提升了预测精度。 展开更多
关键词 间歇性序列 需求预测 时间序列预测 需求模式识别 配件管理
在线阅读 下载PDF
基于小波变换与优化BP神经网络的超短期光伏发电功率预测 被引量:9
14
作者 夏晓荣 胡鹏飞 +3 位作者 王飞 张明晨 赵洁 王波 《电网与清洁能源》 CSCD 北大核心 2024年第10期159-166,共8页
光伏发电功率的精确预测可以帮助电网实现更精细的管理,提高能源利用率;但光伏发电功率受到多种环境因素的影响,且具有较大的随机波动性,故挖掘光伏发电的效率特性非常困难。该文提出一种新方法,通过使用小波变换和优化BP神经网络来预... 光伏发电功率的精确预测可以帮助电网实现更精细的管理,提高能源利用率;但光伏发电功率受到多种环境因素的影响,且具有较大的随机波动性,故挖掘光伏发电的效率特性非常困难。该文提出一种新方法,通过使用小波变换和优化BP神经网络来预测超短期光伏发电功率。该方法基于皮尔逊系数,可以获得与气象因素相关的预测结果;基于离散小波变换(discrete wavelet transform,DWT),将原始功率一阶差分序列分解为若干个不同频段的分量,提取光伏出力波动的频域特性;利用K-means聚类方法对功率一阶差分值进行聚类,并建立相应的神经网络预测模型,通过重组所得预测结果,得到初始预测功率差分值;利用气象因素通过GAACO-BP神经网络修正预测所得功率差分值,得到最终预测功率序列。利用某光伏电站所记录的实际功率数据进行验证,结果表明:DWT-GA-ACO-BP预测模型能提供较为精确的预测结果。 展开更多
关键词 光伏出力预测 小波变换 优化BP神经网络 Kmeans 功率差分序列 超短期预测
在线阅读 下载PDF
较短的长序列时间序列预测模型 被引量:4
15
作者 徐泽鑫 杨磊 李康顺 《计算机应用》 CSCD 北大核心 2024年第6期1824-1831,共8页
针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Un... 针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Uniform Selection Mechanism)自注意力机制搭建一个序列到序列(Seq2Seq)结构,用于提取长序列输入的特征;其次,设计“远轻近重”策略将多个短序列输入特征提取能力较强的长短时记忆(LSTM)模块提取的各时段数据特征进行重分配;最后,用重分配的特征增强提取的长序列输入特征,提高预测精度并实现时序预测。利用4个公开的时间序列数据集验证模型的有效性。实验结果表明,与综合表现次优的对比模型循环门单元(GRU)相比,SLTSFM的平均绝对误差(MAE)指标在4个数据集上的单变量时序预测分别减小了61.54%、13.48%、0.92%和19.58%,多变量时序预测分别减小了17.01%、18.13%、3.24%和6.73%。由此可见SLTSFM在提升较短的长序列时序预测精度方面的有效性。 展开更多
关键词 较短的长序列时间序列预测 序列到序列 长短期记忆 自注意力机制 特征重分配
在线阅读 下载PDF
基于聚合二次模态分解及Informer的短期负荷预测 被引量:20
16
作者 石卓见 冉启武 徐福聪 《电网技术》 EI CSCD 北大核心 2024年第6期2574-2583,I0087-I0091,共15页
针对区域级负荷的非平稳性及长序列预测精度低的问题,该文提出了一种基于聚合二次模态分解及Informer的短期负荷预测方法。首先,运用改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive ... 针对区域级负荷的非平稳性及长序列预测精度低的问题,该文提出了一种基于聚合二次模态分解及Informer的短期负荷预测方法。首先,运用改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)对负荷序列进行初步分解,削弱原始序列的随机性与波动性;其次,根据子序列的样本熵计算结果进行聚合,并通过比较不同的聚合方式选出最优重构方案;然后,利用变分模态分解对高复杂度的合作模态函数进行二次分解;充分考虑到电价、气象等因素对负荷的影响,采用随机森林(random forest,RF)算法进行相关性分析,从而为每个子序列构建不同的高耦合度特征矩阵并输入Informer进行建模,并通过其多层次编码及稀疏多头自注意力机制等方式提高对负荷序列的预测效率;最后采用巴塞罗那区域级负荷数据集进行实例验证,结果显示所提框架有效解决了模态分解过程中的模态混叠以及高频分量问题,并且其长序列预测均方根误差相比其他经典深度学习模型最高降低了65.28%。 展开更多
关键词 短期负荷预测 二次分解 样本熵 聚合方式比较 INFORMER 随机森林算法 长序列预测
在线阅读 下载PDF
基于LightGBM-Informer的盾构隧道管片上浮长时间序列预测模型 被引量:7
17
作者 真嘉捷 赖丰文 +2 位作者 黄明 李爽 许凯 《岩土力学》 EI CAS CSCD 北大核心 2024年第12期3791-3801,共11页
基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影... 基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影响,结合Boruta算法,确定模型输入特征;利用小波变换滤波器、完备自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法消除时间序列数据噪声,构建了一种基于LightBGM-Informer的盾构隧道施工期管片上浮预测模型。通过南京和厦门地区某地铁盾构隧道监测数据,验证了所提模型的准确性和适用性。结果表明,所提模型预测精度较循环神经网络(recurrent neural network,RNN)、长短时记忆网络(long short-term memory,LSTM)、门控循环单元(gated recurrent unit,GRU)、Transformer等模型有所提升,且在地质条件不同的数据集上具有良好的泛化性;随着预测序列长度的增加,该模型的性能优势更突出,可准确预测盾构刀盘前方1~2环未施工管片的上浮值。基于沙普利加和解释(Shapley additive explanations,SHAP)方法的特征重要性分析指出,土舱压力及盾头、盾尾垂直位移对管片上浮影响显著。所提模型可为复杂环境下富水地层盾构隧道管片施工智能化控制提供理论指导。 展开更多
关键词 盾构隧道 管片上浮 长时间序列预测问题 Informer模型 SHAP方法
在线阅读 下载PDF
基于图卷积门控循环单元网络模型的交通速度预测 被引量:2
18
作者 谌贵辉 彭娇 +4 位作者 李忠兵 陈伍 刘会康 韩春阳 刘安东 《计算机应用与软件》 北大核心 2024年第2期109-116,共8页
准确的交通预测能够有效解决交通堵塞和环境污染等问题,然而现有预测方法无法充分表征交通数据的特征。针对以上问题,提出一种序列到序列图卷积门控循环单元(Seq2Seq-GCGRU)模型,用于提取交通速度的时空特性和预测。模型由三部分组成,... 准确的交通预测能够有效解决交通堵塞和环境污染等问题,然而现有预测方法无法充分表征交通数据的特征。针对以上问题,提出一种序列到序列图卷积门控循环单元(Seq2Seq-GCGRU)模型,用于提取交通速度的时空特性和预测。模型由三部分组成,分别用于建模带有时间偏移的交通速度周周期、日周期及临近期信息,还提出一种新的seq2seq训练方法以克服已有方法不适用于时间序列的缺陷。实验结果表明,对比其他常见的交通流预测模型,所提算法具有更高的预测精度,均方根误差(RMSE)与平均绝对误差(MAE)指标至少分别降低25%和24%。 展开更多
关键词 交通速度预测 图卷积 序列到序列 时空相关性
在线阅读 下载PDF
分时段短期电价预测 被引量:60
19
作者 张显 王锡凡 +2 位作者 陈芳华 叶斌 陈皓勇 《中国电机工程学报》 EI CSCD 北大核心 2005年第15期1-6,共6页
分时段电价序列比顺序电价序列的变化特征更单一,有利于电价的分析建模,从而提高预测精度,因此采用各时段电价分别预测的分时段预测方法。该文将相关系数作为选取电价影响因素的标准,考虑了历史电价、负荷、负荷率等影响电价的因素。以... 分时段电价序列比顺序电价序列的变化特征更单一,有利于电价的分析建模,从而提高预测精度,因此采用各时段电价分别预测的分时段预测方法。该文将相关系数作为选取电价影响因素的标准,考虑了历史电价、负荷、负荷率等影响电价的因素。以小波分析和神经网络作为工具,对不同输入因素和不同预测方法下的电价预测精度进行了研究,并重点比较了基于分时段电价序列的预测方法和基于顺序电价序列的预测方法。算例采用美国新英格兰电力市场历史数据,对其2002年第4季度的电价进行了连续预测。与基于顺序电价序列的预测方法相比,分时段短期电价预测方法能够使平均相对百分比误差下降约3个百分点。 展开更多
关键词 电力市场 电价预测 分时段电价序列 顺序电价序列 小波分析 神经网络
在线阅读 下载PDF
余震的序列参数稳定性和余震短期发生率预测效能的连续评估——以2014年云南鲁甸6.5级地震为例 被引量:17
20
作者 蒋长胜 吴忠良 +3 位作者 尹凤玲 郭路杰 毕金孟 王亚文 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2015年第11期4163-4173,共11页
为考察目前国际上广泛使用、对真实地震序列描述最好的"传染型余震序列模型"(ETAS)在主震后的序列参数拟合、余震短期发生率预测的效能,本研究以2014年云南鲁甸MS6.5地震序列为例,采用滑动连续拟合与预测的方式,考察了ETAS模型参数... 为考察目前国际上广泛使用、对真实地震序列描述最好的"传染型余震序列模型"(ETAS)在主震后的序列参数拟合、余震短期发生率预测的效能,本研究以2014年云南鲁甸MS6.5地震序列为例,采用滑动连续拟合与预测的方式,考察了ETAS模型参数的动态变化和余震短期发生率预测的实际效能.连续滑动拟合结果表明,在主震发生后的早期阶段,α值有明显的不稳定变化,在震后5.10天稳定在1.6~2.0;p值在震后25.00天内由1.07逐渐下降至0.78左右,其后稳定在0.72~0.85;b值在震后35.00天内逐渐由0.80增加至0.95,其后稳定在0.93~0.97.对连续滑动预测结果的N-test检验表明,余震发生率预测会出现部分失效现象,1天预测时间窗失效比例约为12%、3天预测时间窗失效比例为6%.建议可在震后早期采用1天的较短预测时间窗,而在序列参数较为稳定时段采用较长的3天预测时间窗. 展开更多
关键词 地震序列 ETAS模型 短期预测 统计检验
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部