传统兴趣点(point of interest,POI)推荐方法对用户和POI的关联关系挖掘不充分,无法全面捕捉用户偏好;基于图增强的推荐方法虽能挖掘关联关系,却易引入噪声,降低推荐性能。针对这些问题,本文提出了结合通用轨迹图和多偏好的POI推荐方法...传统兴趣点(point of interest,POI)推荐方法对用户和POI的关联关系挖掘不充分,无法全面捕捉用户偏好;基于图增强的推荐方法虽能挖掘关联关系,却易引入噪声,降低推荐性能。针对这些问题,本文提出了结合通用轨迹图和多偏好的POI推荐方法。首先构建了用户与POI的带权二部图,利用图卷积网络捕捉用户和POI的交互关系,学习用户兴趣偏好;利用兴趣偏好完成用户聚类,进而构建同类型用户通用轨迹图,减少噪声信息影响;利用图卷积网络捕捉同类型用户的群体特征,丰富特征表示。其次,将群体特征与用户当前轨迹中时间类别感知信息、时空上下文信息相结合,利用Transformer挖掘用户的深层行为偏好。再次,构造非线性加性函数并将兴趣偏好和行为偏好动态组合,全面捕捉用户偏好,完成POI推荐。最后,在真实数据集上验证了本文方法的有效性。展开更多
文摘传统兴趣点(point of interest,POI)推荐方法对用户和POI的关联关系挖掘不充分,无法全面捕捉用户偏好;基于图增强的推荐方法虽能挖掘关联关系,却易引入噪声,降低推荐性能。针对这些问题,本文提出了结合通用轨迹图和多偏好的POI推荐方法。首先构建了用户与POI的带权二部图,利用图卷积网络捕捉用户和POI的交互关系,学习用户兴趣偏好;利用兴趣偏好完成用户聚类,进而构建同类型用户通用轨迹图,减少噪声信息影响;利用图卷积网络捕捉同类型用户的群体特征,丰富特征表示。其次,将群体特征与用户当前轨迹中时间类别感知信息、时空上下文信息相结合,利用Transformer挖掘用户的深层行为偏好。再次,构造非线性加性函数并将兴趣偏好和行为偏好动态组合,全面捕捉用户偏好,完成POI推荐。最后,在真实数据集上验证了本文方法的有效性。