期刊文献+
共找到159篇文章
< 1 2 8 >
每页显示 20 50 100
基于自监督图卷积和注意力机制实现隐式反馈降噪的社交推荐
1
作者 郭向星 周魏 +3 位作者 杨正益 文俊浩 杨佳佳 刘蔓 《电子学报》 北大核心 2025年第1期151-162,共12页
基于图神经网络的社交推荐系统取得了较好的性能,然而,基于图神经网络的社交推荐模型存在以下挑战:基于图神经网络的模型的邻域聚集操作会放大用户的隐式行为中的噪声,使得用户和物品的向量表示存在偏差;用户物品图中的边和用户社交关... 基于图神经网络的社交推荐系统取得了较好的性能,然而,基于图神经网络的社交推荐模型存在以下挑战:基于图神经网络的模型的邻域聚集操作会放大用户的隐式行为中的噪声,使得用户和物品的向量表示存在偏差;用户物品图中的边和用户社交关系图中的边的异质性,导致基于图神经网络在两张图上学习到的用户向量表示存在于不同的语义空间,直接融合往往得到次优的向量表示.针对上述问题,本文提出了基于自监督图卷积和注意力机制实现隐式反馈降噪的社交推荐模型.该模型从原始的用户物品图中捕捉用户的真实兴趣,生成降噪的用户物品交互图;提出一种新颖的用户向量融合方法,对异质的用户向量表示进行融合.在两个公开数据集上的实验结果表明,所提出的模型在不同数据集上的推荐性能均较基线模型有显著提升.在lastfm数据集上,推荐性能提升了1.18%至3.87%;在ciao数据集上,推荐性能提升了3.56%至7.31%.通过消融实验验证了模型各个模块的有效性. 展开更多
关键词 注意力机制 隐式反馈 图卷积神经网络 自监督学习 社交推荐
在线阅读 下载PDF
一种基于RGCN的多功能雷达工作模式识别方法
2
作者 郁春来 冯明月 +2 位作者 金宏斌 张福群 张强飞 《现代防御技术》 北大核心 2025年第1期120-128,共9页
多功能雷达因其灵活的工作模式和捷变的波形特征,可并行执行多种任务等优势,已获得广泛应用,对雷达情报侦察对抗带来了极大挑战。识别多功能雷达工作模式是后续威胁评估、自适应对抗和引导攻击的前提和基础,直接决定着雷达对抗措施的针... 多功能雷达因其灵活的工作模式和捷变的波形特征,可并行执行多种任务等优势,已获得广泛应用,对雷达情报侦察对抗带来了极大挑战。识别多功能雷达工作模式是后续威胁评估、自适应对抗和引导攻击的前提和基础,直接决定着雷达对抗措施的针对性和有效性。主要以典型多功能雷达为研究对象,对典型的作战场景仿真建模,在深入分析多功能雷达不同工作模式的基础上,提出了一种基于关系图卷积网络(relational graph convolutional networks,RGCN)的多功能雷达工作模式识别的新方法,实现了数据的并行化处理,解决了不同工作模式与特征参数之间的相互作用。 展开更多
关键词 多功能雷达 工作模式识别 神经网络 图卷积网络 关系图卷积网络
在线阅读 下载PDF
基于卷积神经网络与图卷积网络的水力机械故障诊断
3
作者 吴学春 夏臣智 +4 位作者 肖湘曲 李超顺 李英玉 莫兆祥 吴韬为 《中国农村水利水电》 北大核心 2025年第2期143-147,共5页
水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械... 水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械设备监测信号卷积深度特征,同时利用快速傅里叶变换获取监测信号频谱值,构建监测信号图数据,建立图卷积网络提取样本关联特征。然后利用注意力机制对不同类型特征进行加权求和实现多模态特征融合。最后利用全连接层实现设备的故障诊断。通过水电机组、水泵主机组故障实测数据以及轴承故障数据进行验证,结果表明所提模型能有效实现水力机械设备故障诊断。 展开更多
关键词 水力机械 卷积神经网络 图卷积网络 故障诊断
在线阅读 下载PDF
结合全局信息和局部信息的三维网格分割框架
4
作者 张梦瑶 周杰 +1 位作者 李文婷 赵勇 《浙江大学学报(工学版)》 北大核心 2025年第5期912-919,共8页
针对Graph Transformer比较擅长捕获全局信息,但对局部精细信息的提取不够充分的问题,将图卷积神经网络(GCN)引入Graph Transformer中,得到Graph Transformer and GCN (GTG)模块,构建了能够结合全局信息和局部信息的网格分割框架. GTG... 针对Graph Transformer比较擅长捕获全局信息,但对局部精细信息的提取不够充分的问题,将图卷积神经网络(GCN)引入Graph Transformer中,得到Graph Transformer and GCN (GTG)模块,构建了能够结合全局信息和局部信息的网格分割框架. GTG模块利用Graph Transformer的全局自注意力机制和GCN的局部连接性质,不仅可以捕获全局信息,还能够加强局部精细信息的提取.为了更好地保留边界区域的信息,设计边缘保持的粗化算法,可以使粗化过程仅作用在非边界区域.利用边界信息对损失函数进行加权,提高了神经网络对边界区域的关注程度.在实验方面,通过视觉效果和定量比较证明了采用本文算法能够获得高质量的分割结果,利用消融实验表明了GTG模块和边缘保持粗化算法的有效性. 展开更多
关键词 三维网格 网格分割 graph Transformer 图卷积神经网络(GCN) 边缘保持的粗化算法
在线阅读 下载PDF
基于改进STGCN与N-BEATS的风功率超短期预测
5
作者 程旭初 刘景霞 康荣凯 《现代电子技术》 北大核心 2025年第8期115-121,共7页
精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提... 精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提取数据时空特征来提高预测精度。首先,利用STGCN对多元输入序列进行深度特征提取,充分挖掘风机SCADA数据中的时空潜在关系;同时,为了进一步提高预测精度,通过构建序列分解模块与多分辨率卷积对STGCN模型进行改进,使其能够更好地适应风电数据的复杂特性;然后,神经基扩展分析(N-BEATS)新型神经网络对STGCN提取的时空信息数据进行时序关系分析,得到最终预测结果;最后,以内蒙古某风场SCADA数据为例,通过多模型对比实验与自身消融实验验证了所提组合模型策略的有效性以及对STGCN的改进效果。实验结果表明,所设计模型在预测精度上取得了显著的提升,为风电功率预测领域的研究提供了新的思路和方法。 展开更多
关键词 超短期风功率预测 时空图卷积 神经基扩展分析 序列分解 深度特征提取 图卷积网络
在线阅读 下载PDF
融合机器学习的媒体广告推荐系统平台设计
6
作者 侯媛媛 姜皖 《佳木斯大学学报(自然科学版)》 2025年第1期146-149,共4页
当前的单域与跨域广告推荐算法在进行广告推荐时存在准确性低且计算资源耗费大等问题,因此融合机器学习算法中的图卷积神经网络、自适应条目选择以及边注意力机制来构建了媒体广告推荐系统平台。结果表明,融合算法的归一化折损累计收益... 当前的单域与跨域广告推荐算法在进行广告推荐时存在准确性低且计算资源耗费大等问题,因此融合机器学习算法中的图卷积神经网络、自适应条目选择以及边注意力机制来构建了媒体广告推荐系统平台。结果表明,融合算法的归一化折损累计收益值最高达到0.118,命中率最高达到0.264,均高于对比模型,同时在数据集A中高于模型H 0.5%左右。另外,6个数据集中指标1的数值上最高达到0.196,显著高于对比算法。与其他推荐系统对比,研究系统在食品广告数据集上的均方误差约为0.75,在时尚广告中的均方误差约为0.71,均低于对比系统。综合来看,研究设计的媒体广告推荐系统平台具备有效性,可以实际应用在媒体广告推荐中。 展开更多
关键词 机器学习 图卷积神经网络 边注意力机制 广告推荐系统 准确性
在线阅读 下载PDF
集加权K近邻与卷积块注意力的三维点云语义分割
7
作者 肖剑 王晓红 +3 位作者 周润民 李炜 杨祎斐 罗季 《激光杂志》 北大核心 2025年第2期225-231,共7页
基于深度学习的点云语义分割模型在改进模型时多采用复杂度高的注意力机制,而且在提取局部深度语义特征和近邻点特征表达中存在不足。因此,提出集加权K近邻与卷积块注意力的点云语义分割模型。在动态图卷积网络架构上,设计加权K近邻算... 基于深度学习的点云语义分割模型在改进模型时多采用复杂度高的注意力机制,而且在提取局部深度语义特征和近邻点特征表达中存在不足。因此,提出集加权K近邻与卷积块注意力的点云语义分割模型。在动态图卷积网络架构上,设计加权K近邻算法以获取更有效的局部邻域;再引入通卷积块注意力处理局部邻域中特征;在卷积块注意力中,通道注意力用于加强点云通道关联,空间注意力用于感知三维空间结构并获取上下文信息及深度语义特征。实验结果表明,该模型在ShapeNet Part部件分割数据集和S3DIS室内语义分割数据集分别达到85.86%和61.2%的平均交并比,相比其他方法具有较高的分割精度。 展开更多
关键词 语义分割 三维点云 动态图卷积网络 K近邻 卷积块注意力
在线阅读 下载PDF
基于骨骼数据和双流网络的跌倒检测方法
8
作者 王琰 王玫 +1 位作者 刘鑫 阚瑞祥 《桂林理工大学学报》 北大核心 2025年第1期120-126,共7页
针对老年人因摔倒后救助不及时而造成伤亡、给家庭和社会带来了严重负担,而及时发现老年人摔倒并通知其子女或者帮助其呼叫救助成为当前越来越迫切的需求的现状,以Kinect v2信息采集系统为平台,提出了一种基于特征融合与注意力机制优化... 针对老年人因摔倒后救助不及时而造成伤亡、给家庭和社会带来了严重负担,而及时发现老年人摔倒并通知其子女或者帮助其呼叫救助成为当前越来越迫切的需求的现状,以Kinect v2信息采集系统为平台,提出了一种基于特征融合与注意力机制优化的双流网络的跌倒检测方法,在有效提高跌倒检测准确率的同时,也避免了涉及用户隐私的问题。用骨骼点三维数据与骨骼向量夹角体现人体倾覆跌倒,通过图卷积神经网络(GCN)与双向门控循环单元(Bi-GRU)提取空域与时域特征,结合注意力机制与特征融合操作增强网络对跌倒行为特征信息的提取能力与学习能力,进一步提高老人跌倒事件检测的准确率。仿真结果表明,在实际场景测试与Florence 3D数据集中达到了较好的效果,验证了该方法的准确性与有效性。 展开更多
关键词 KINECT 注意力机制 特征融合 图卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于多信息融合分析的客户精准画像与推送算法设计
9
作者 齐光鹏 《现代电子技术》 北大核心 2025年第6期175-179,共5页
针对原始图卷积神经网络推送模型存在的冷启动和过平滑问题,文中基于堆叠重构网络和改进自编码器网络,提出一种针对用户画像的多信息推送模型。对于冷启动问题,在图卷积网络的输出部分,将用户画像中的评价信息嵌入到网络中,之后通过注... 针对原始图卷积神经网络推送模型存在的冷启动和过平滑问题,文中基于堆叠重构网络和改进自编码器网络,提出一种针对用户画像的多信息推送模型。对于冷启动问题,在图卷积网络的输出部分,将用户画像中的评价信息嵌入到网络中,之后通过注意力网络层提取特征信息,并对模型进行堆叠,以提升用户交互数据的质量。对于过平滑问题,增加网络层数的同时,使用改进的自编码器和度预测模块对动态图网络进行局部训练,从而提升算法的个性化推荐能力。在实验测试中,相较基线最优算法,所提算法的HR指标分别提升22.7%、12.2%,NDCG指标分别提升4.7%和6.5%。证明了该算法性能良好,能够为用户提供精确化的推送服务。 展开更多
关键词 图卷积神经网络 堆叠重构网络 用户精准画像 自注意力模型 度预测模块 推送算法
在线阅读 下载PDF
联合图卷积和聚类的红外无人机集群多目标跟踪算法
10
作者 李琦 席建祥 +2 位作者 杨小冈 卢瑞涛 谢学立 《电光与控制》 北大核心 2025年第3期15-20,共6页
针对红外无人机集群多目标跟踪场景中个体间外观特征稀少,且同质化严重、集群内个体相互遮挡、平台晃动等挑战问题,提出了一种基于图卷积神经网络(GCN)与聚类算法的融合跟踪算法。首先,引入自注意力特征掩码以增强GCN对轨迹聚合的效果;... 针对红外无人机集群多目标跟踪场景中个体间外观特征稀少,且同质化严重、集群内个体相互遮挡、平台晃动等挑战问题,提出了一种基于图卷积神经网络(GCN)与聚类算法的融合跟踪算法。首先,引入自注意力特征掩码以增强GCN对轨迹聚合的效果;其次,结合交并比(IoU)和可能性C均值聚类,以增强对运动特征的提取和集群内相邻目标的区分能力;最后,采用轨迹连接模型和高斯平滑插值算法对跟踪结果进行进一步优化。所提算法融合了短时轨迹聚合和长时轨迹匹配的能力,仅利用运动信息和交互信息就能实现红外无人机集群多目标跟踪。在红外无人机集群多目标跟踪数据集上进行实验,结果表明:与其他先进跟踪算法相比,所提跟踪算法具有更高的性能指标,MOTA与IDF1分别达到84.9%与80.2%;在目标相互遮挡、平台晃动等复杂场景下也具有优越的跟踪效果。 展开更多
关键词 无人机集群 红外目标跟踪 图卷积神经网络 时空联合约束 轨迹片段聚合
在线阅读 下载PDF
基于多尺度时空残差图卷积神经网络的动作识别
11
作者 陈智威 兰兴荣 +3 位作者 曾永强 赵辉 甘宏 张永华 《海军航空大学学报》 2025年第2期292-302,共11页
针对现有方法在舰船和海上作业人员的识别中,由于时空图卷积层结构固定,难以对舰船动态行为和海上作业人员动作建立短期和长期的信息关联的问题,提出了一种基于多尺度时空残差图卷积神经网络的动作识别方法,其核心思想是通过时空图卷积... 针对现有方法在舰船和海上作业人员的识别中,由于时空图卷积层结构固定,难以对舰船动态行为和海上作业人员动作建立短期和长期的信息关联的问题,提出了一种基于多尺度时空残差图卷积神经网络的动作识别方法,其核心思想是通过时空图卷积网络提取舰船和海上作业人员的时空特征,并构造残差模块,以丰富模型在空间和时间维度上的感受野。具体而言:首先,将舰船轨迹和海上作业人员动作数据作为整体网络的输入,构建一个早期融合的基于图卷积网络的多输入分支架构,从而在人体关节点数据中捕获丰富的特征;其次,通过一系列空间图卷积和时间卷积组成的子图卷积对特征进行处理,并采用分层残差架构形成时空残差图卷积模块,实现邻域多次时空聚合,从而捕获空间和时间域中的短期和长期依赖关系;最后,通过堆叠多个时空残差图卷积模块来进行动作识别。在NTU RGB+D、NTU RGB+D120和Kinetics-Skeleton数据集上进行对比实验,模型的性能具有显著的优势。 展开更多
关键词 图卷积神经网络 多输入分支架构 残差架构 时空聚合 动作识别
在线阅读 下载PDF
结合GCN和LSTM考虑时空信息的城市交通流量预测
12
作者 李正楠 赵智辉 《吉林大学学报(信息科学版)》 2025年第1期187-194,共8页
针对当前交通流量的智能预测方法没有分析和考虑路网的时空关联性问题,在智能预测方法中增加了时空关联性信息,解决了时空信息缺失造成的预测精度降低的问题。首先结合交通路网的图连接和车辆通行延时特性,分析城市路网的时空关联性;考... 针对当前交通流量的智能预测方法没有分析和考虑路网的时空关联性问题,在智能预测方法中增加了时空关联性信息,解决了时空信息缺失造成的预测精度降低的问题。首先结合交通路网的图连接和车辆通行延时特性,分析城市路网的时空关联性;考虑城市交通时空关联情况,基于图卷积神经网络(GCN:Graph Convolutional Neural)和长短期记忆网络(LSTM:Long Short-Term Memory)方法,研究了结合GCN、LSTM考虑时空信息的城市交通流量预测方法,应用开源的城市交通流量数据集优化训练了城市交通流量预测网络,并对比LSTM、双向长短期记忆网络(BiLSTM:Bidirectional Long Short-Term Memory)及不同网络节点数目在求解该交通流量预测问题的表现。研究结果表明,该方法可以有效预测城市交通流量,相对未考虑时空信息的预测方法准确度有所提升,该研究可为智慧交通系统中的交通预测提供理论参考。 展开更多
关键词 图卷积神经网络 长短期记忆网络 城市交通 车流预测 时空信息
在线阅读 下载PDF
AI-Based Optimization of Handover Strategy in Non-Terrestrial Networks 被引量:5
13
作者 ZHANG Chenchen ZHANG Nan +2 位作者 CAO Wei TIAN Kaibo YANG Zhen 《ZTE Communications》 2021年第4期98-104,共7页
Complicated radio resource management,e.g.,handover condition,will trouble the user in non-terrestrial networks due to the impact of high mobility and hierarchical layouts which co-exist with terrestrial networks or v... Complicated radio resource management,e.g.,handover condition,will trouble the user in non-terrestrial networks due to the impact of high mobility and hierarchical layouts which co-exist with terrestrial networks or various platforms at different altitudes.It is necessary to optimize the handover strategy to reduce the signaling overhead and im⁃prove the service continuity.In this paper,a new handover strategy is proposed based on the convolutional neural network.Firstly,the handover process is modeled as a directed graph.Suppose a user knows its future signal strength,then he/she can search for the best handover strategy based on the graph.Secondly,a convolutional neural network is used to extract the underlying regularity of the best handover strategies of different users,based on which any user can make near-optimal handover decisions according to its historical signal strength.Numerical simulation shows that the proposed handover strategy can effi⁃ciently reduce the handover number while ensuring the signal strength. 展开更多
关键词 convolutional neural network directed graph HANDOVER low earth orbit nonterrestrial network
在线阅读 下载PDF
Topology and Semantic Information Fusion Classification Network Based on Hyperspectral Images of Chinese Herbs 被引量:1
14
作者 Boyu Zhao Yuxiang Zhang +2 位作者 Zhengqi Guo Mengmeng Zhang Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2023年第5期551-561,共11页
Most methods for classifying hyperspectral data only consider the local spatial relation-ship among samples,ignoring the important non-local topological relationship.However,the non-local topological relationship is b... Most methods for classifying hyperspectral data only consider the local spatial relation-ship among samples,ignoring the important non-local topological relationship.However,the non-local topological relationship is better at representing the structure of hyperspectral data.This paper proposes a deep learning model called Topology and semantic information fusion classification network(TSFnet)that incorporates a topology structure and semantic information transmis-sion network to accurately classify traditional Chinese medicine in hyperspectral images.TSFnet uses a convolutional neural network(CNN)to extract features and a graph convolution network(GCN)to capture potential topological relationships among different types of Chinese herbal medicines.The results show that TSFnet outperforms other state-of-the-art deep learning classification algorithms in two different scenarios of herbal medicine datasets.Additionally,the proposed TSFnet model is lightweight and can be easily deployed for mobile herbal medicine classification. 展开更多
关键词 Chinese herbs hyperspectral image deep learning non-local topological relationships convolutional neural network(CNN) graph convolutional network(GCN) LIGHTWEIGHT
在线阅读 下载PDF
基于并行图卷积网络的无砟轨道监测测点异常识别 被引量:1
15
作者 孙立 郏凯亮 +2 位作者 林超 黄永 李惠 《铁道学报》 EI CAS CSCD 北大核心 2024年第3期78-86,共9页
针对在服役过程中高速铁路无砟轨道结构健康监测可能出现由结构局部损伤或者传感器故障导致的测点异常问题,建立一种并行图卷积神经网络模型,来识别高速铁路无砟轨道监测测点的异常。采用结构早期初始状态的监测数据训练并行图卷积神经... 针对在服役过程中高速铁路无砟轨道结构健康监测可能出现由结构局部损伤或者传感器故障导致的测点异常问题,建立一种并行图卷积神经网络模型,来识别高速铁路无砟轨道监测测点的异常。采用结构早期初始状态的监测数据训练并行图卷积神经网络,获得结构初始状态下的测点数据之间的空间关联性;利用并行图卷积神经网络预测服役状态无砟轨道测点监测数据,实现轨道监测测点异常的识别;此外,对明显漂移的数据可基于有向图分析修正预测结果。将该方法应用于某高速铁路无砟轨道结构长期监测数据并识别了异常测点。 展开更多
关键词 图卷积神经网络 无砟轨道 结构健康监测 异常识别 状态评估
在线阅读 下载PDF
一种基于GCN的光伏短期出力预测方法研究 被引量:1
16
作者 张亮 周立洋 +2 位作者 徐晓春 李荣 李睿 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期289-294,共6页
为提高光伏短期出力预测精确问题,提出一种基于图卷积神经网络(GCN)的光伏短期出力预测方法。首先,构建考虑多气象影响因素的光伏短期出力模型,开展光伏出力影响因素和出力特性分析。其次,对光伏出力历史时序数据进行图形化转换和数据重... 为提高光伏短期出力预测精确问题,提出一种基于图卷积神经网络(GCN)的光伏短期出力预测方法。首先,构建考虑多气象影响因素的光伏短期出力模型,开展光伏出力影响因素和出力特性分析。其次,对光伏出力历史时序数据进行图形化转换和数据重构,构建邻接矩阵并提取光伏短期出力图形化特征数据。在多时间尺度场景下,建立基于GCN的光伏出力预测模型,并与基于长短期记忆网络(LSTM)、反向传播网络(BP)、图注意力模型(GAT)等算法的预测模型做比对分析。最后,以某地区光伏出力实测数据开展仿真验证研究,仿真结果表明所提方法具有良好的预测效果。 展开更多
关键词 光伏发电 图卷积神经网络 图形数据结构 多时间尺度
在线阅读 下载PDF
基于链接关系预测的弯曲密集型商品文本检测
17
作者 耿磊 李嘉琛 +2 位作者 刘彦北 李月龙 李晓捷 《天津工业大学学报》 CAS 北大核心 2024年第4期50-59,74,共11页
针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷... 针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷积神经网络和自注意力并行的双分支结构提取局部和全局特征,并加入空洞特征增强模块(DFM)减少深层特征图在降维过程中信息的丢失;上采样采用特征金字塔与多级注意力融合模块(MAFM)相结合的方式进行多级特征融合以增强文本特征间的潜在联系,通过文本检测器从上采样输出的特征图中检测文本组件;在链接关系预测网络中,采用基于图卷积网络的关系推理框架预测文本组件间的深层相似度,采用双向长短时记忆网络将文本组件聚合为文本实例。为验证RRNet的检测性能,构建了一个由商品包装图片组成的文本检测数据集(text detection dataset composed of commodity packaging,CPTD1500)。实验结果表明:RPTNet不仅在公开文本数据集CTW-1500和Total-Text上取得了优异的性能,而且在CPTD1500数据集上的召回率和F值分别达到了85.4%和87.5%,均优于当前主流算法。 展开更多
关键词 文本检测 卷积神经网络 自注意力 特征融合 图卷积网络 双向长短时记忆网络
在线阅读 下载PDF
变工况下动态卷积域对抗图神经网络故障诊断
18
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督域自适应 动态卷积 域对抗 图神经网络 图生成 高斯Wasserstein距离 故障诊断 变工况
在线阅读 下载PDF
基于MPGCN-Resnet的滚动轴承故障诊断研究
19
作者 严胜利 付辉 李浩 《计量学报》 CSCD 北大核心 2024年第12期1832-1840,共9页
滚动轴承装设在各类机床等生产机械中,易出现故障并失效,需要持续监测以确保其安全可靠运行。基于此,设计了多路并行图卷积残差网络(MPGCN-Resnet)完成滚动轴承故障诊断。MPGCN-Resnet共包含4个部分:基于Cmor小波的时频图获取部分完成... 滚动轴承装设在各类机床等生产机械中,易出现故障并失效,需要持续监测以确保其安全可靠运行。基于此,设计了多路并行图卷积残差网络(MPGCN-Resnet)完成滚动轴承故障诊断。MPGCN-Resnet共包含4个部分:基于Cmor小波的时频图获取部分完成了各类故障振动信号中重构与拆解的细化处理;基于多路平行网络的特征获取部分可提升泛化性并加快收敛;残差结构图神经网络下的特征学习部分完成了特征学习,并实现了滚动轴承故障特征的深度发掘;GAP-Softmax故障分类部分完成了滚动轴承故障的有效诊断。采用CWRU轴承数据集完成MPGCN-Resnet和IHDSVM-Alexnet、MSATM方法在变工况、变噪声情况下准确度和损失值的对比与分析实验。结果表明,MPGCN-Resnet对滚动轴承的平均故障诊断准确度可达96.4%,在-6 dB的噪声环境中高于91%,在负载突变3×0.75 kW时大于90%。MPGCN-Resnet在各类变工况和变噪声环境中的滚动轴承故障诊断准确率均高于其他两种方法,并能缓解参量增加和过度计算的问题。 展开更多
关键词 滚动轴承 故障诊断 图卷积神经网络 Cmor小波 过度计算
在线阅读 下载PDF
基于计算机视觉和DNN的运动姿态检测算法
20
作者 李严 董坤 《电子设计工程》 2024年第11期46-50,共5页
针对传统人体运动姿态检测算法存在鲁棒性较差及准确率偏低的问题,文中基于改进的深度图卷积网络提出了一种运动姿态检测算法。该算法将图卷积网络的时域和空间域模型相结合,提升了模型的感受野,并从时、空两个维度提取人体特征点的数据... 针对传统人体运动姿态检测算法存在鲁棒性较差及准确率偏低的问题,文中基于改进的深度图卷积网络提出了一种运动姿态检测算法。该算法将图卷积网络的时域和空间域模型相结合,提升了模型的感受野,并从时、空两个维度提取人体特征点的数据,再利用残差网络将时域和空间域卷积相连接,进而改善了模型拟合能力较差的不足。同时,对于模型因卷积核固定而导致无法适应多种类数据的缺陷,使用多头注意力机制来增强其自适应能力。在实验测试中,所提出的模型改进项相较原算法性能有一定提升,且与最优算法相比,该模型的误差指标降低了1.14 mm,准确率则提升了1.3%,证明了所提方法的有效性及优越性。 展开更多
关键词 时空结合 深度图卷积神经网络 残差网络 注意力机制 运动姿态检测 计算机视觉
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部