为加强危险货物道路运输风险源头管控,以危货运输车辆行驶轨迹数据为分析对象,研究安全、经济且符合企业自身偏好的道路运输路径优化选择问题,提出了基于偏好、上下文感知的危险货物道路运输个性化路径推荐方法。首先对危货运输车辆历...为加强危险货物道路运输风险源头管控,以危货运输车辆行驶轨迹数据为分析对象,研究安全、经济且符合企业自身偏好的道路运输路径优化选择问题,提出了基于偏好、上下文感知的危险货物道路运输个性化路径推荐方法。首先对危货运输车辆历史轨迹数据进行处理,通过提取路径安全和经济性特征学习危货运输企业的路径偏好,在此基础上,综合考虑偏好向量间的距离和方向相似性,提出了改进的K-means偏好聚类算法(improved K-means clustering algorithm based on distance and direction similarity measurement,DDM-K-means),获取了路径偏好类别;其次,依据运输任务执行的时间、天气、运距三方面信息,建立了路径上下文向量,并运用Rock聚类算法划分路径的上下文类别,与路径偏好类别共同构成路径信息;最终,基于神经协同过滤提出了危险货物道路运输路径选择优化算法(optimal route selection algorithm based on neural collaborative filtering,NCF-ORS),得到了危货运输企业对各路径类别的偏好排序,从而为企业推荐最优路径。与基线算法比较分析,结果表明危险货物道路运输个性化路径推荐方法<DDM-K-means,NCF-ORS>,平均绝对百分比误差最低。研究结果有助于挖掘车辆轨迹数据中更多的潜在信息,提升个性化路径推荐能力,可为危货运输企业的选线问题提供决策支持。展开更多
文摘为加强危险货物道路运输风险源头管控,以危货运输车辆行驶轨迹数据为分析对象,研究安全、经济且符合企业自身偏好的道路运输路径优化选择问题,提出了基于偏好、上下文感知的危险货物道路运输个性化路径推荐方法。首先对危货运输车辆历史轨迹数据进行处理,通过提取路径安全和经济性特征学习危货运输企业的路径偏好,在此基础上,综合考虑偏好向量间的距离和方向相似性,提出了改进的K-means偏好聚类算法(improved K-means clustering algorithm based on distance and direction similarity measurement,DDM-K-means),获取了路径偏好类别;其次,依据运输任务执行的时间、天气、运距三方面信息,建立了路径上下文向量,并运用Rock聚类算法划分路径的上下文类别,与路径偏好类别共同构成路径信息;最终,基于神经协同过滤提出了危险货物道路运输路径选择优化算法(optimal route selection algorithm based on neural collaborative filtering,NCF-ORS),得到了危货运输企业对各路径类别的偏好排序,从而为企业推荐最优路径。与基线算法比较分析,结果表明危险货物道路运输个性化路径推荐方法<DDM-K-means,NCF-ORS>,平均绝对百分比误差最低。研究结果有助于挖掘车辆轨迹数据中更多的潜在信息,提升个性化路径推荐能力,可为危货运输企业的选线问题提供决策支持。
基金Supported by the National High-Tech Research and Development Plan of China under Grant No.2007AA04Z148 (国家高技术研究发 展计划(863))the National Natural Science Foundation of China under Grant No.60573126 (国家自然科学基金)the National Basic Research Program of China under Grant No.2002CB312005 (国家重点基础研究发展计划(973))