Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determ...Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.展开更多
Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soar...Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference.展开更多
To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm w...To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones.展开更多
The advantage of using a spline function to evaluate the trajectory parameters optimization is discussed. A new method that using adaptive varied terminal-node spline interpolation for solving trajectory optimization ...The advantage of using a spline function to evaluate the trajectory parameters optimization is discussed. A new method that using adaptive varied terminal-node spline interpolation for solving trajectory optimization is proposed. And it is validated in optimizing the trajectory of guided bombs and extended range guided munitions (ERGM). The solutions are approximate to the real optimization results. The advantage of this arithmetic is that it can be used to solve the trajectory optimization with complex models. Thus, it is helpful for solving the practical engineering optimization problem.展开更多
Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free...Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free deep neural network(DNN) based trajectory optimization method for intercepting noncooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard constrained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to integrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and reduces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Finally, numerical results demonstrate the feasibility and efficiency of our proposed method.展开更多
This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,...This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,from which the ball bearings are possible failures according to the results.Subsequently,three schemes against impact loadings,full-element deep groove ball bearing and integrated raceway,needle roller thrust bearing assembly,and gaskets are utilized for redesigning the actuator to effectively reduce the bearings’stress.However,multi-objectives optimization still needs to be conducted for the gaskets to decrease the stress value further to the yield stress.Four gasket’s structure parameters and three bearings’peak-peak stress are served as the four optimization variables and three objectives,respectively.Optimized Latin hypercube design is used for generating sample points,and Kriging model selected according to estimation result can establish the relationship between the variables and objectives,representing the simulation which is time-consuming.Accordingly,two optimization algorithms work out the Pareto solutions,from which the best solutions are selected,and verified by the simulation to determine the gaskets optimized structure parameters.It can be concluded that the simulation and optimization method based on these components is effective and efficient.展开更多
This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajec...This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajectory functional representation method is proposed. Considering the practical requirement of online trajectory, the 4-order polynomial function is used to represent the trajectory, and which can be determined by two independent parameters with the trajectory terminal conditions; thus, the trajectory online optimization problem is converted into the optimization of the two parameters, which largely lowers the complexity of the optimization problem. Furthermore, the scopes of the two parameters have been assessed into small ranges using the golden section ratio method. Secondly, a multi-population rotation strategy differential evolution approach (MPRDE) is designed to optimize the two parameters; in which, 'current-to-best/1/bin', 'current-to-rand/1/bin' and 'rand/2/bin' strategies with fixed parameter settings are designed, these strategies are rotationally used by three subpopulations. Thirdly, the rolling optimization method is applied to model the online trajectory optimization process. Finally, simulation results demonstrate the efficiency and real-time calculation capability of the designed combined strategy for UCAV trajectory online optimizing under dynamic and complicated environments.展开更多
This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight enviro...This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight environment for aerial vehicles.Delaunay-Map,Safe Flight Corridor(SFC),and Relative Safe Flight Corridor(RSFC)are applied to ensure each UAV flight trajectory's safety.By using such techniques,it is possible to avoid the collision with obstacles and collision between UAVs.Bezier-curve is further developed to ensure that multi-UAVs can simultaneously reach the target at the specified time,and the trajectory is within the flight corridor.The trajectory tracking controller is also designed based on model predictive control to track the planned trajectory accurately.The simulation and experiment results are presented to verifying developed strategies of Multi-UAV cooperative attacks.展开更多
To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectr...To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.展开更多
In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory opti...In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.展开更多
The trajectory optimization of an unpowered reentry vehicle via artificial emotion memory optimization(AEMO)is discussed.Firstly,reentry dynamics are established based on multiple constraints and parameterized control...The trajectory optimization of an unpowered reentry vehicle via artificial emotion memory optimization(AEMO)is discussed.Firstly,reentry dynamics are established based on multiple constraints and parameterized control variables with finite dimensions are designed.If the constraint is not satisfied,a distance measure and an adaptive penalty function are used to address this scenario.Secondly,AEMO is introduced to solve the trajectory optimization problem.Based on the theories of biology and cognition,the trial solutions based on emotional memory are established.Three search strategies are designed for realizing the random search of trial solutions and for avoiding becoming trapped in a local minimum.The states of the trial solutions are determined according to the rules of memory enhancement and forgetting.As the iterations proceed,the trial solutions with poor quality will gradually be forgotten.Therefore,the number of trial solutions is decreased,and the convergence of the algorithm is accelerated.Finally,a numerical simulation is conducted,and the results demonstrate that the path and terminal constraints are satisfied and the method can realize satisfactory performance.展开更多
In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scena...In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.展开更多
This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative contro...This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.展开更多
Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automat...Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automated machine learning(AutoML)based method to generate optimal trajectories in long-distance scenarios.Compared with conventional deep neural network(DNN)methods,the proposed method dramatically reduces the reliance on manual intervention and machine learning expertise.Firstly,based on differential game theory and costate normalization technique,the trajectory optimization problem is formulated under the assumption of continuous thrust.Secondly,the AutoML technique based on sequential model-based optimization(SMBO)framework is introduced to automate DNN design in deep learning process.If recommended DNN architecture exists,the tree-structured Parzen estimator(TPE)is used,otherwise the efficient neural architecture search(NAS)with network morphism is used.Thus,a novel trajectory optimization method with high computational efficiency is achieved.Finally,numerical results demonstrate the feasibility and efficiency of the proposed method.展开更多
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha...This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.展开更多
The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal traject...The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal trajectory modification capability aiming at the consistently updating predicted impact point(PIP) in the midcourse phase. A novel midcourse optimal trajectory cluster generation and trajectory modification algorithm is proposed based on the neighboring optimal control theory. Firstly, the midcourse trajectory optimization problem is introduced; the necessary conditions for the optimal control and the transversality constraints are given.Secondly, with the description of the neighboring optimal trajectory existence theory(NOTET), the neighboring optimal control(NOC)algorithm is derived by taking the second order partial derivations with the necessary conditions and transversality conditions. The revised terminal constraints are reversely integrated to the initial time and the perturbations of the co-states are further expressed with the states deviations and terminal constraints modifications.Thirdly, the simulations of two different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.展开更多
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta...Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.展开更多
The various uncertainties of Mars environment have great impact on the process of vehicles entering the atmosphere.To improve the robustness of control system against the model errors and to reduce the computational b...The various uncertainties of Mars environment have great impact on the process of vehicles entering the atmosphere.To improve the robustness of control system against the model errors and to reduce the computational burden, an optimal feedback based tracking control law is developed. The control scheme presented in this paper determines the amplitude and the reversals of bank angle respectively in the longitudinal and lateral flight plane. At each control cycle, the amplitude of the bank angle is obtained by an optimal feedback controller to minimize tracking errors. The control gains are tuned according to the closed-loop error dynamics by using optimization methods. The bank reversals are executed if the crossrange exceeds a predetermined corridor which is designed by setting a boundary function. The accuracy and robustness of the proposed closed-loop optimal feedback based control law in tracking the reference trajectory is verified via500 deviation simulations, in which modeling errors and external disturbances are considered.展开更多
The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle...The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle within the medium and intermediate ranges,and compare its performance with the performances of wing-body and lifting-body vehicles vis-a-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study.Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints.The trajectory optimization problem is modeled as a nonlinear,multiphase,constraint optimal control problem and is solved using a hp-adaptive pseudospectral method.Detail modeling aspects of mass,aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed.It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°,respectively,for maximum down-range performance under the constraint heat rate environment.The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively.The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration.The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52425211,52272360,and 52472394)Chongqing Natural Science Foundation(CSTB2023NSCQ-MSX0300)。
文摘Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.
基金support received by the National Natural Science Foundation of China(Grant Nos.52372398&62003272).
文摘Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference.
基金supported by the National Natural Science Foundation of China(61272011)
文摘To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones.
文摘The advantage of using a spline function to evaluate the trajectory parameters optimization is discussed. A new method that using adaptive varied terminal-node spline interpolation for solving trajectory optimization is proposed. And it is validated in optimizing the trajectory of guided bombs and extended range guided munitions (ERGM). The solutions are approximate to the real optimization results. The advantage of this arithmetic is that it can be used to solve the trajectory optimization with complex models. Thus, it is helpful for solving the practical engineering optimization problem.
基金supported by the National Defense Science and Technology Innovation (18-163-15-Lz-001-004-13)。
文摘Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free deep neural network(DNN) based trajectory optimization method for intercepting noncooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard constrained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to integrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and reduces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Finally, numerical results demonstrate the feasibility and efficiency of our proposed method.
基金The authors would like to acknowledge National Defense Pre-Research Foundation of China(Grant No.41419030102)to provide fund for conducting experiments.
文摘This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,from which the ball bearings are possible failures according to the results.Subsequently,three schemes against impact loadings,full-element deep groove ball bearing and integrated raceway,needle roller thrust bearing assembly,and gaskets are utilized for redesigning the actuator to effectively reduce the bearings’stress.However,multi-objectives optimization still needs to be conducted for the gaskets to decrease the stress value further to the yield stress.Four gasket’s structure parameters and three bearings’peak-peak stress are served as the four optimization variables and three objectives,respectively.Optimized Latin hypercube design is used for generating sample points,and Kriging model selected according to estimation result can establish the relationship between the variables and objectives,representing the simulation which is time-consuming.Accordingly,two optimization algorithms work out the Pareto solutions,from which the best solutions are selected,and verified by the simulation to determine the gaskets optimized structure parameters.It can be concluded that the simulation and optimization method based on these components is effective and efficient.
基金supported by the National Natural Science Foundation of China(61601505)the Aeronautical Science Foundation of China(20155196022)the Shaanxi Natural Science Foundation of China(2016JQ6050)
文摘This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajectory functional representation method is proposed. Considering the practical requirement of online trajectory, the 4-order polynomial function is used to represent the trajectory, and which can be determined by two independent parameters with the trajectory terminal conditions; thus, the trajectory online optimization problem is converted into the optimization of the two parameters, which largely lowers the complexity of the optimization problem. Furthermore, the scopes of the two parameters have been assessed into small ranges using the golden section ratio method. Secondly, a multi-population rotation strategy differential evolution approach (MPRDE) is designed to optimize the two parameters; in which, 'current-to-best/1/bin', 'current-to-rand/1/bin' and 'rand/2/bin' strategies with fixed parameter settings are designed, these strategies are rotationally used by three subpopulations. Thirdly, the rolling optimization method is applied to model the online trajectory optimization process. Finally, simulation results demonstrate the efficiency and real-time calculation capability of the designed combined strategy for UCAV trajectory online optimizing under dynamic and complicated environments.
基金National Natural Science Foundation of China(No.61903350)Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight environment for aerial vehicles.Delaunay-Map,Safe Flight Corridor(SFC),and Relative Safe Flight Corridor(RSFC)are applied to ensure each UAV flight trajectory's safety.By using such techniques,it is possible to avoid the collision with obstacles and collision between UAVs.Bezier-curve is further developed to ensure that multi-UAVs can simultaneously reach the target at the specified time,and the trajectory is within the flight corridor.The trajectory tracking controller is also designed based on model predictive control to track the planned trajectory accurately.The simulation and experiment results are presented to verifying developed strategies of Multi-UAV cooperative attacks.
基金supported by the National Basic Research Program of China(973 Program)(2012CB720003)the National Natural Science Foundation of China(10772011)
文摘To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.
基金supported by the Natural Science Foundation of Tianjin(12JCZDJC30300)the Research Foundation of Tianjin Key Laboratory of Process Measurement and Control(TKLPMC-201613)the State Scholarship Fund of China
文摘In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-optical Equipment Institute,Aviation Industry Corporation of China(6142504200108).
文摘The trajectory optimization of an unpowered reentry vehicle via artificial emotion memory optimization(AEMO)is discussed.Firstly,reentry dynamics are established based on multiple constraints and parameterized control variables with finite dimensions are designed.If the constraint is not satisfied,a distance measure and an adaptive penalty function are used to address this scenario.Secondly,AEMO is introduced to solve the trajectory optimization problem.Based on the theories of biology and cognition,the trial solutions based on emotional memory are established.Three search strategies are designed for realizing the random search of trial solutions and for avoiding becoming trapped in a local minimum.The states of the trial solutions are determined according to the rules of memory enhancement and forgetting.As the iterations proceed,the trial solutions with poor quality will gradually be forgotten.Therefore,the number of trial solutions is decreased,and the convergence of the algorithm is accelerated.Finally,a numerical simulation is conducted,and the results demonstrate that the path and terminal constraints are satisfied and the method can realize satisfactory performance.
基金Project(61273138) supported by the National Natural Science Foundation of ChinaProjects(KJ2016A169,KJ2015A242) supported by the University Natural Science Research Key Project of Anhui Province,ChinaProject(ZRC2014444) supported by the Talents Program of Anhui Science and Technology University,China
文摘In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.
基金support from the National Natural Science Foundation of China(No.61773395)。
文摘This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.
基金supported by the National Defense Science and Technology Innovation program(18-163-15-LZ-001-004-13).
文摘Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automated machine learning(AutoML)based method to generate optimal trajectories in long-distance scenarios.Compared with conventional deep neural network(DNN)methods,the proposed method dramatically reduces the reliance on manual intervention and machine learning expertise.Firstly,based on differential game theory and costate normalization technique,the trajectory optimization problem is formulated under the assumption of continuous thrust.Secondly,the AutoML technique based on sequential model-based optimization(SMBO)framework is introduced to automate DNN design in deep learning process.If recommended DNN architecture exists,the tree-structured Parzen estimator(TPE)is used,otherwise the efficient neural architecture search(NAS)with network morphism is used.Thus,a novel trajectory optimization method with high computational efficiency is achieved.Finally,numerical results demonstrate the feasibility and efficiency of the proposed method.
基金funding from the Australian Government,via Grant No.AUSMURIB000001 associated with ONR MURI Grant No.N00014-19-1-2571。
文摘This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6150340861573374)
文摘The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal trajectory modification capability aiming at the consistently updating predicted impact point(PIP) in the midcourse phase. A novel midcourse optimal trajectory cluster generation and trajectory modification algorithm is proposed based on the neighboring optimal control theory. Firstly, the midcourse trajectory optimization problem is introduced; the necessary conditions for the optimal control and the transversality constraints are given.Secondly, with the description of the neighboring optimal trajectory existence theory(NOTET), the neighboring optimal control(NOC)algorithm is derived by taking the second order partial derivations with the necessary conditions and transversality conditions. The revised terminal constraints are reversely integrated to the initial time and the perturbations of the co-states are further expressed with the states deviations and terminal constraints modifications.Thirdly, the simulations of two different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.
文摘Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.
基金supported by the National Natural Science Foundation of China(11372345)
文摘The various uncertainties of Mars environment have great impact on the process of vehicles entering the atmosphere.To improve the robustness of control system against the model errors and to reduce the computational burden, an optimal feedback based tracking control law is developed. The control scheme presented in this paper determines the amplitude and the reversals of bank angle respectively in the longitudinal and lateral flight plane. At each control cycle, the amplitude of the bank angle is obtained by an optimal feedback controller to minimize tracking errors. The control gains are tuned according to the closed-loop error dynamics by using optimization methods. The bank reversals are executed if the crossrange exceeds a predetermined corridor which is designed by setting a boundary function. The accuracy and robustness of the proposed closed-loop optimal feedback based control law in tracking the reference trajectory is verified via500 deviation simulations, in which modeling errors and external disturbances are considered.
基金the Chinese Scholarship Council for supporting the research
文摘The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle within the medium and intermediate ranges,and compare its performance with the performances of wing-body and lifting-body vehicles vis-a-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study.Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints.The trajectory optimization problem is modeled as a nonlinear,multiphase,constraint optimal control problem and is solved using a hp-adaptive pseudospectral method.Detail modeling aspects of mass,aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed.It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°,respectively,for maximum down-range performance under the constraint heat rate environment.The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively.The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration.The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.