期刊文献+
共找到288篇文章
< 1 2 15 >
每页显示 20 50 100
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型 被引量:1
1
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
利用混合深度学习算法的时空风速预测 被引量:1
2
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
基于蜉蝣优化算法的时空融合交通流预测研究 被引量:1
3
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷积网络 门控线性单元 注意力机制 图卷积网络
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
4
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
基于改进图卷积的多站点海浪高度预测方法
5
作者 卢鹏 王慧 +1 位作者 王振华 郑宗生 《海洋测绘》 北大核心 2025年第4期37-42,共6页
海浪高度的变化不仅随时间变化,还受周围海域的影响。针对现有方法仅关注单一站点的时序特征,缺乏对同一区域内不同站点间海浪高度的时空信息提取问题,提出一种改进图卷积的多站点海浪高度预测模型SD-STSGCN。首先采用基于密度的K-mean... 海浪高度的变化不仅随时间变化,还受周围海域的影响。针对现有方法仅关注单一站点的时序特征,缺乏对同一区域内不同站点间海浪高度的时空信息提取问题,提出一种改进图卷积的多站点海浪高度预测模型SD-STSGCN。首先采用基于密度的K-means聚类对站点分组;其次提出缩放距离因子构建邻接矩阵以动态调整权重;最后结合扩张卷积的时空同步图卷积模块捕捉时空特征,非线性映射输出各组站点未来时段的海浪高度预测结果。在覆盖多维度场景的44个站点上进行大区域实验,结果表明,相比于LSTM和TCN等模型,SD-STSGCN的预测效果最好,该方法有效挖掘了多站点时空相关性,为海浪高度预测提供了有效的补充方案。 展开更多
关键词 海浪高度预测 多站点预测 时空同步图卷积 时空相关性 邻接矩阵
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
6
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
基于动态图卷积Transformer的瓦斯浓度预测模型
7
作者 董立红 赵楠楠 +1 位作者 王丹 秦昳 《工矿自动化》 北大核心 2025年第9期72-80,共9页
准确预测瓦斯浓度对预防瓦斯灾害事故至关重要,预测精度受瓦斯浓度时间变化规律和瓦斯扩散时空分布特征的双重影响。现有的模型驱动预测方法难以胜任长期和大规模瓦斯浓度预测任务,而数据驱动预测方法未考虑动态空间维度特征的影响,导... 准确预测瓦斯浓度对预防瓦斯灾害事故至关重要,预测精度受瓦斯浓度时间变化规律和瓦斯扩散时空分布特征的双重影响。现有的模型驱动预测方法难以胜任长期和大规模瓦斯浓度预测任务,而数据驱动预测方法未考虑动态空间维度特征的影响,导致模型泛化性能较差。为了捕获瓦斯浓度变化的时空依赖性,提高瓦斯预测精确性,提出一种融合多尺度机制的时序−动态图卷积Transformer(TDMformer)并用于构建瓦斯浓度预测模型。在ITransformer框架基础上,设计了时序−变量注意力机制,用于同时建模时序与变量维度特征;融合动态图卷积网络,用于描述井下瓦斯传感器网络拓扑结构,捕获瓦斯浓度数据的空间依赖性;引入多尺度门控Tanh单元,以增强多尺度特征提取能力。实验结果表明,与Graph−WaveNet,GRU,Transformer,AGCRN,DSformer,STAEformer,FourierGNN等模型相比,TDMformer模型的均方根误差分别降低了24.87%,26.37%,21.69%,19.57%,11.90%,10.84%,9.20%,平均绝对误差分别降低了17.09%,25.58%,26.89%,14.56%,11.10%,5.75%,4.53%,拟合系数分别提高了5.94%,6.51%,4.79%,4.12%,2.21%,2.08%,1.76%,验证了该模型具有更高的预测精度和数据拟合度。 展开更多
关键词 瓦斯浓度预测 TRANSFORMER ITransformer 动态图卷积网络 时序-变量注意力机制
在线阅读 下载PDF
基于多维注意力机制的高速公路交通流量预测方法
8
作者 虞安军 励英迪 +5 位作者 杨哲懿 付崇宇 童蔚苹 余佳 刘云海 刘志远 《汽车安全与节能学报》 北大核心 2025年第3期463-469,共7页
为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(T... 为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(TCN)提取交通流空间和时间维度的特征,结合多维注意力机制挖掘时空数据中的关键信息,同时引入多任务学习架构,通过基于同方差不确定性的损失函数来平衡不同任务共同学习,以提高模型的泛化能力和鲁棒性。结果表明:该模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为7.467和5.133,相较基准模型有更好的预测精度;提出的该交通流量预测方法可有效地挖掘交通流的时空特性,描述真实交通运行状态,对高速公路交通流量做出精准预测。 展开更多
关键词 交通流预测 图神经网络(GNN) 时间卷积网络(TCN) 多维注意力机制
在线阅读 下载PDF
动静图融合和时序流注意力网络用于交通流预测
9
作者 闫敬 王祥 郑铮 《兵工自动化》 北大核心 2025年第5期66-70,共5页
为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correla... 为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correlation modeling,TCM)模块替换流注意力机制的线性变换方法,以增强模型的时序建模能力。在4个真实世界的交通数据集上进行了大量实验。实验结果表明:所提出的模型具有优越的性能,并且明显优于基线。 展开更多
关键词 交通流预测 时空相关性 流注意力机制 图卷积网络 特征融合
在线阅读 下载PDF
基于引导图卷积网络的人体动作轮廓动态识别
10
作者 鲁光男 李柯景 岳莉 《现代电子技术》 北大核心 2025年第21期101-104,共4页
为捕捉节点信号随时间的演变规律,准确预测人体动作,提升人员安全性,文中提出基于引导图卷积网络的人体动作轮廓动态识别方法,全面地理解人体动作的动态变化。利用OpenPose模型获取动作视频中人体各个关节点的位置,构建人体动作骨架图;... 为捕捉节点信号随时间的演变规律,准确预测人体动作,提升人员安全性,文中提出基于引导图卷积网络的人体动作轮廓动态识别方法,全面地理解人体动作的动态变化。利用OpenPose模型获取动作视频中人体各个关节点的位置,构建人体动作骨架图;建立跨时空图结构,描述不同视频帧人体关键点之间的时间依赖关系,设计多尺度邻接矩阵,捕捉人体动作的跨时空相关性;引入注意力机制对不同尺度的邻接矩阵进行权重分配,确定关键关节点间的关系;基于频谱图理论对人体骨架时空图进行时空卷积操作,深入挖掘空间维度上的信号关联性,并捕捉节点信号随时间的演变,通过全连接层进行降维和激活函数处理,输出人体动作轮廓动态识别结果。结果表明:文中方法能够有效地捕捉人体动作的时空特征,对于不同场景下和不同复杂程度的动作类型,该方法的人体动作轮廓动态识别准确性均在90%以上,证明所提方法具有较高的准确性和鲁棒性。 展开更多
关键词 OpenPose模型 图卷积网络 注意力机制 频谱图理论 人体骨架时空图 时空特性
在线阅读 下载PDF
融合时空特征的多模态车辆轨迹预测方法
11
作者 史昕 王浩泽 +1 位作者 纪艺 马峻岩 《计算机工程与应用》 北大核心 2025年第7期325-333,共9页
针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间... 针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间特征提取。通过特征融合门控单元实现每个时间步长对应时空特征的自适应融合,并利用门控循环单元(GRU)网络构建解码器进一步生成未来车辆轨迹的概率分布。利用公开的NGSIM数据集对所提出模型进行消融实验及预测精度分析。仿真结果表明,GCNTA模型在预测误差均方根(RMSE)平均值相比GCN、图注意力网络(GAT)和长短期记忆网络(LSTM)模型分别减少15.6%、16.3%和23.8%。 展开更多
关键词 车辆轨迹预测 深度学习 图神经网络 时域卷积网络 注意力机制
在线阅读 下载PDF
基于动态自适应门控图卷积网络的交通拥堵预测
12
作者 王庆荣 高桓伊 +2 位作者 朱昌锋 何润田 慕壮壮 《华南理工大学学报(自然科学版)》 北大核心 2025年第9期31-47,共17页
随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面... 随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面仍存在一定局限性。针对这一问题,该文提出了一种基于图神经网络的门控时空卷积网络模型,以更有效地刻画和预测交通拥堵状况。首先,通过改进的K-均值聚类算法将原始数据划分为多个拥堵状态类别,并将其作为辅助特征融入预测模型,以增强特征表达能力;然后,引入门控时间卷积网络以捕捉交通数据间的时序特性与动态依赖关系,并构建动态自适应门控图卷积网络,通过信号生成模块与双层调制机制实现特征融合与动态权重分配,从而完成对时空特征的有效提取;最后,引入残差连接以增强训练过程的稳定性,并利用跳跃连接对多层次与多尺度特征进行有效整合。在真实交通数据集PeMS08与PeMS04上对所提模型的有效性进行了验证,结果表明,该模型的预测精度优于其他基线模型。 展开更多
关键词 交通拥堵预测 图神经网络 动态自适应门控 聚类算法 门控时间卷积网络
在线阅读 下载PDF
基于时空伪李生网络的图深度强化学习分区电压控制策略
13
作者 崔杨 祝福 +3 位作者 王议坚 黄思宇 赵钰婷 杨茂 《中国电机工程学报》 北大核心 2025年第21期8295-8307,I0003,共14页
随着高比例分布式光伏接入配电网,电压越限和网损增加等问题愈发显著,而传统电压控制方法难以实时处理新能源出力快速变化导致的电压剧烈波动,无法满足未来新型配电网的安全稳定运行要求。为此,该文提出一种基于时空伪孪生网络的图多智... 随着高比例分布式光伏接入配电网,电压越限和网损增加等问题愈发显著,而传统电压控制方法难以实时处理新能源出力快速变化导致的电压剧烈波动,无法满足未来新型配电网的安全稳定运行要求。为此,该文提出一种基于时空伪孪生网络的图多智能体深度强化学习的配电网分区电压控制策略。首先,在双重约束条件下界定光伏逆变器无功调节范围;其次,将配电网分区电压控制问题建模为分布式部分可观测马尔可夫决策过程(partially observable Markov decisionprocess,POMDP);再次,在算法中嵌入动态图注意力网络和长短期记忆(longshort-termmemory,LSTM)网络组成的时空伪孪生网络,生成时空融合的特征向量;最后,在改进的IEEE141节点配电网系统中进行算例验证。结果表明,相比于传统电压控制方法,所提算法在有效减小电压偏差和功率损耗的同时,还具备较强泛化性和实时性,可为实现新型配电网分区电压控制提供灵活高效的解决方案。 展开更多
关键词 伪李生网络 多智能体 深度强化学习 分区电压控制 动态图注意力网络 时空融合
在线阅读 下载PDF
计及动态时空相关性的多风电场短期功率预测
14
作者 李丹 黄烽云 +3 位作者 杨帆 唐建 罗娇娇 方泽仁 《电力系统及其自动化学报》 北大核心 2025年第2期1-9,共9页
针对同一区域内多风电场出力间复杂且动态的时空相关性,提出一种基于注意力时空同步图卷积网络的多风电场短期功率预测模型。首先引入注意力机制量化天气特征对风功率的影响,构建相邻3个时间步的风功率局部时空图,卷积提取局部时空特征... 针对同一区域内多风电场出力间复杂且动态的时空相关性,提出一种基于注意力时空同步图卷积网络的多风电场短期功率预测模型。首先引入注意力机制量化天气特征对风功率的影响,构建相邻3个时间步的风功率局部时空图,卷积提取局部时空特征;然后用时空同步图卷积层聚合输入时窗的整体时空特征;最后非线性映射输出多风电场未来时段的功率预测结果。实际算例结果表明,所提模型通过学习不同天气条件下风功率的时空动态演变规律,可将多风电场日前功率预测精度提高2.10%~13.94%。 展开更多
关键词 深度学习 风电功率 相关性 时空同步图卷积网络 功率预测
在线阅读 下载PDF
基于时空动态图的交通流量预测方法研究
15
作者 孟祥福 谢伟鹏 崔江燕 《智能系统学报》 北大核心 2025年第4期776-786,共11页
为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动... 为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动的角度挖掘潜在的时空关系,并重构每个时间步的节点动态关联图。嵌入层使用时空自适应嵌入方法建模交通数据的内在时空关系和时间信息;编码器部分利用时空记忆注意力机制,从全局视角对时空特征进行建模;解码器部分将图卷积模块注入循环神经网络中,以同时捕捉时间和空间依赖关系,并输出未来流量情况。实验结果表明,所提模型与最优基线模型解耦动态时空图神经网络(decoupled dynamic spatial-temporal graph neural network,D2STGNN)相比,平均绝对误差降低了1.63%,模型训练时间缩短了近2.5倍。本研究有效提升了交通流量预测的准确性与效率,为智能交通系统的建设提供了有力支撑。 展开更多
关键词 交通流量 时空数据 混合模型 注意力机制 时空动态图 图卷积神经网络 循环神经网络 深度学习
在线阅读 下载PDF
基于STGCN-Transformer的短期电力净负荷预测
16
作者 孟伟 俞斌 +3 位作者 白隆 徐婕 顾晋豪 郭锋 《中国测试》 北大核心 2025年第6期160-169,共10页
智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题... 智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题,该文提出一种基于时空图卷积网络(spatial temporal graph convolutional networks,STGCN)和Transformer相结合的综合能源系统短期负荷预测模型。首先,利用STGCN作为输入嵌入层对多元输入序列进行编码,填补Transformer中没有充分考虑相关信息的空白。然后,利用Transformer中的自注意机制捕获序列数据的时间依赖性。最后,利用前馈神经网络输出预测负荷值。以浙江省某地区电力数据集为例,与其他4种预测模型相比较平均绝对百分比误差均在5%以内,结果表明该文模型具有较高的预测精度和稳定性。 展开更多
关键词 时空图卷积网络 TRANSFORMER 多头注意力机制 短期净负荷预测
在线阅读 下载PDF
中国省域绿色全要素生产率空间关联网络的结构特征及其演化机制
17
作者 吴朝霞 龙思宇 +1 位作者 杨胜苏 孙坤 《生态学报》 北大核心 2025年第12期5736-5752,共17页
精准把握区域绿色全要素生产率的空间关联网络特征,探究省域绿色全要素生产率空间关联网络的动态演变机制,找寻区域绿色全要素生产率的最优提升路径,是实现区域经济高质量发展的的关键所在。基于社会网络分析法剖析2006—2021年中国30... 精准把握区域绿色全要素生产率的空间关联网络特征,探究省域绿色全要素生产率空间关联网络的动态演变机制,找寻区域绿色全要素生产率的最优提升路径,是实现区域经济高质量发展的的关键所在。基于社会网络分析法剖析2006—2021年中国30个省绿色全要素生产率空间关联特征,结合TERGM模型探究省域绿色全要素生产率空间关联网络的形成和演化机制。研究结果表明:(1)区域绿色全要素生产率整体呈增长态势,空间上呈现东部>中部>西部的不均衡特征,且由于马太效应东西差距逐渐扩大。(2)省际间绿色全要素生产率合作关联突破了地理邻近性。探索发现虽然绿色全要素生产率空间关联网络呈现出复杂、多线程的结构特征,但核心-边缘结构明显,说明目前尚未构成完整的要素传递路径。(3)借助块模分析将总区域划分为四个板块,发现板块发展不平衡,板块内联系稀疏,板块间联系存在深化空间。其中以北京、天津、上海为主的“净受益”板块虹吸效应大于辐射效应,主导地位凸显;以内蒙古、黑龙江、青海等在内的“净溢出”板块溢出效应显著,绿色发展潜力有待激发。(4)TERGM结果表明中国绿色全要素生产率空间关联网络的形成和演化受到要素、市场、政府、地理距离等多重因素的综合影响,因此缓解区域绿色全要素生产率增长差异,加快经济社会发展全面绿色转型需发挥多主体、多要素、多环节的协同作用。 展开更多
关键词 绿色全要素生产率 空间网络结构 社会网络分析 时序指数随机图模型(TERGM)
在线阅读 下载PDF
基于时空图卷积网络与多层次特征融合的快递员3D人体姿态估计
18
作者 丁德波 史耀群 《传感技术学报》 北大核心 2025年第8期1457-1462,共6页
将快递员的人体动作数字化,赋能物流行业的智能化转型,从提升效率、保障健康到推动人机协作,具有广泛的应用潜力。提出了一种新方法,融合了时空图卷积网络与多层次特征融合技术。该方法首先利用时空图卷积网络对人体骨架序列进行建模,... 将快递员的人体动作数字化,赋能物流行业的智能化转型,从提升效率、保障健康到推动人机协作,具有广泛的应用潜力。提出了一种新方法,融合了时空图卷积网络与多层次特征融合技术。该方法首先利用时空图卷积网络对人体骨架序列进行建模,有效提取关节间的空间关系及时序依赖性。接着,通过引入多层次特征融合模块,融合来自不同网络层的特征信息,包括低层次的细节特征和高层次的抽象特征,从而更全面地捕捉快递员的人体关节动态变化和运动模式。为了验证所提方法的性能,在公开数据集Human3.6M上进行了实验。该数据集由视觉传感器采集得到,包含了丰富的人体姿态信息。仿真实验结果表明,所提出的方法能够显著提高三维姿态估计的精度。 展开更多
关键词 三维人体姿态估计 时空图卷积网络 多层次特征融合
在线阅读 下载PDF
时–空特征驱动的多轮次重构图卷积网络故障诊断方法 被引量:3
19
作者 王庆昕 张先杰 +3 位作者 张海峰 钟凯 陈宏田 韩敏 《控制理论与应用》 北大核心 2025年第1期149-157,共9页
近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出... 近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出了一种时–空特征驱动的多轮次重构图卷积网络(STMR-GCN)故障诊断方法.该方法首先利用多尺度卷积神经网络与GCN对故障信号进行特征提取.然后根据样本之间的余弦相似性对图结构进行多次重构,重构后的图模型能够更精确地反映样本之间的连边关系,并将得到的图模型输入到GCN进行故障种类的识别.最后,在东南大学(SEU)仿真数据集和真实的磨煤机数据集上进行实验,实验结果表明所提方法与其他对比方法相比诊断精度均有提高,从而证明STMR-GCN模型在故障诊断方面的有效性和实用性. 展开更多
关键词 故障诊断 时空特征 多轮次图重构 图卷积网络
在线阅读 下载PDF
融合同步知识和时空信息的电力系统暂态稳定评估框架 被引量:1
20
作者 刘雨晴 刘曌 +4 位作者 王小君 刘畅宇 裴玮 郄朝辉 窦嘉铭 《电网技术》 北大核心 2025年第6期2334-2346,共13页
新型电力系统复杂耦合特性和时变因素骤增,对暂态稳定评估(transientstabilityassessment,TSA)的准确性和快速性提出更高要求。深度学习算法的引入为TSA问题提供新的解决思路,但模型的结果可靠性问题制约其实际应用。因此提出一种融合... 新型电力系统复杂耦合特性和时变因素骤增,对暂态稳定评估(transientstabilityassessment,TSA)的准确性和快速性提出更高要求。深度学习算法的引入为TSA问题提供新的解决思路,但模型的结果可靠性问题制约其实际应用。因此提出一种融合同步知识和时空信息的评估框架,从电气特征选择、融入领域知识和模型内嵌可解释性方面提升评估性能与结果可信度。首先分析电气特征量与暂态稳定间的理论映射关系,引导模型特征选择;其次分析基于Kuramoto耦合振子模型的同步现象,将同步关键参数(节点耦合强度)引入图卷积神经网络(graph convolution network,GCN)的空间拓扑表示;在此基础上,结合内嵌可解释的Informer模型,提出Infor-GCN模型提取暂态过程特征时空耦合信息并进行特征增强;然后针对不同特征的稳定判别结果设计综合输出策略,提高模型结果可靠性。最后在IEEE-68节点系统的仿真算例表明所提方法在评估准确度和分析效率上具有优越性,并且在新样本下具备较强的泛化能力。 展开更多
关键词 暂态稳定评估 深度学习 图卷积神经网络 同步知识 时空特征
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部