A multiple targets detection method based on spatial smoothing (MTDSS) is proposed to solve the problem of the source number estimation under the colored noise background. The forward and backward smoothing based on...A multiple targets detection method based on spatial smoothing (MTDSS) is proposed to solve the problem of the source number estimation under the colored noise background. The forward and backward smoothing based on auxiliary vectors which are received data on some specific elements is computed. By the spatial smoothing with auxiliary vectors, the correlated signals are decorrelated, and the colored noise is partially alleviated. The correlation matrix formed from the cross correlations between subarray data and auxiliary vectors is computed. By exploring the second-order statistics property of the covariance matrix, a threshold based on Gerschgorin radii of the smoothing correlation matrix is set to estimate the number of sources. Simulations and experimental results validate that MTDSS has an effective performance under the condition of the colored noise background and coherent sources, and MTDSS is robust with the correlated factor of signals and noise.展开更多
针对多部空间姿态时刻变化的机载雷达,提出了一种全新的、无需依赖先验信息(如雷达位置和姿态)的空间配准策略,本策略涉及到实时配准参数解算以及融合点迹优化等多个关键环节。利用目标点迹数据建立雷达间的空间姿态关系,借助递归最小...针对多部空间姿态时刻变化的机载雷达,提出了一种全新的、无需依赖先验信息(如雷达位置和姿态)的空间配准策略,本策略涉及到实时配准参数解算以及融合点迹优化等多个关键环节。利用目标点迹数据建立雷达间的空间姿态关系,借助递归最小二乘法(recursive least squares,RLS)迭代求解旋转矩阵和平移向量,进而实现各雷达坐标系的实时配准。此外,引入了一种基于融合结果的目标轨迹级空间配准参数反向调节策略,通过构建配准误差模型并运用梯度下降法进行优化,有效降低了融合轨迹误差,提升了配准精度与跟踪质量。所提策略为雷达空间姿态的实时配准问题提供了一种全面且高效的解决方案,具有重大的理论价值与实际应用前景。展开更多
针对视觉算法在检测航拍图像中密集小目标时容易受到目标重叠、遮挡等情况干扰的现象,提出了一种基于高阶空间特征(目标形状、位置等信息的高级表示)提取的Transformer检测头HSF-TPH(Transformer prediction head with high-order spati...针对视觉算法在检测航拍图像中密集小目标时容易受到目标重叠、遮挡等情况干扰的现象,提出了一种基于高阶空间特征(目标形状、位置等信息的高级表示)提取的Transformer检测头HSF-TPH(Transformer prediction head with high-order spatial feature extraction)。所提检测头中将自注意力机制中的二阶交互扩展到三阶以生成高阶空间特征,提取更有区分度的空间关系,突出每一个小目标在空间上的语义信息。同时,为了缓解骨干网络过度下采样对小目标信息的压缩,设计了一种高分辨率特征图生成机制,增加头部网络的输入特征分辨率,以提升HSFTPH检测密集小目标的效果。设计了新的损失函数USIoU,降低算法位置偏差敏感性。在VisDrone2019数据集上开展实验证明,所提算法在面积最小、密度最高的人类目标的检测任务中实现了mAP50指标10个百分点以上的性能提升。展开更多
针对复杂环境下猫眼目标探测易受环境干扰、特征区分度不足等问题,提出一种基于空间上下文的决策级融合猫眼目标检测算法(Decision-level Fusion based on Spatial Context,DFSC)。算法由三个模块组成:在猫眼目标检测模块中,提出基于自...针对复杂环境下猫眼目标探测易受环境干扰、特征区分度不足等问题,提出一种基于空间上下文的决策级融合猫眼目标检测算法(Decision-level Fusion based on Spatial Context,DFSC)。算法由三个模块组成:在猫眼目标检测模块中,提出基于自适应迭代最大类间方差的图像二值化方法,结合迭代前景细化策略和动态收敛机制,在精确提取猫眼目标连通域的同时保留局部细节信息;构建了傅里叶功率谱和归一化加权质心偏移特征描述子,提升猫眼与干扰目标的可区分性;提出基于自适应环境感知的多维特征加权融合方法,实现特征权重的自适应优化。在通用目标检测模块中,将可变形卷积DCNv3引入YOLOv8骨干网络的C2f模块,提升对遮挡目标和小目标的检测性能。在基于空间上下文的决策级融合模块中,通过计算猫眼目标的遮挡率来评估其与环境干扰目标的空间关系,从而有效抑制虚警。在基于自主研发的激光主动探测系统构建的猫眼目标检测数据集上开展实验,结果表明,与现有主流算法相比,召回率由92.2%提升至98.9%,精度由49.0%提升至74.5%,单帧耗时8.3 ms,显著降低了算法在复杂环境下的虚警率。展开更多
基金supported by the National Natural Science Foundation of China (61001153)the Fundamental Research Program of Northwestern Polytechnical University (JC20100223)
文摘A multiple targets detection method based on spatial smoothing (MTDSS) is proposed to solve the problem of the source number estimation under the colored noise background. The forward and backward smoothing based on auxiliary vectors which are received data on some specific elements is computed. By the spatial smoothing with auxiliary vectors, the correlated signals are decorrelated, and the colored noise is partially alleviated. The correlation matrix formed from the cross correlations between subarray data and auxiliary vectors is computed. By exploring the second-order statistics property of the covariance matrix, a threshold based on Gerschgorin radii of the smoothing correlation matrix is set to estimate the number of sources. Simulations and experimental results validate that MTDSS has an effective performance under the condition of the colored noise background and coherent sources, and MTDSS is robust with the correlated factor of signals and noise.
文摘针对多部空间姿态时刻变化的机载雷达,提出了一种全新的、无需依赖先验信息(如雷达位置和姿态)的空间配准策略,本策略涉及到实时配准参数解算以及融合点迹优化等多个关键环节。利用目标点迹数据建立雷达间的空间姿态关系,借助递归最小二乘法(recursive least squares,RLS)迭代求解旋转矩阵和平移向量,进而实现各雷达坐标系的实时配准。此外,引入了一种基于融合结果的目标轨迹级空间配准参数反向调节策略,通过构建配准误差模型并运用梯度下降法进行优化,有效降低了融合轨迹误差,提升了配准精度与跟踪质量。所提策略为雷达空间姿态的实时配准问题提供了一种全面且高效的解决方案,具有重大的理论价值与实际应用前景。
文摘针对视觉算法在检测航拍图像中密集小目标时容易受到目标重叠、遮挡等情况干扰的现象,提出了一种基于高阶空间特征(目标形状、位置等信息的高级表示)提取的Transformer检测头HSF-TPH(Transformer prediction head with high-order spatial feature extraction)。所提检测头中将自注意力机制中的二阶交互扩展到三阶以生成高阶空间特征,提取更有区分度的空间关系,突出每一个小目标在空间上的语义信息。同时,为了缓解骨干网络过度下采样对小目标信息的压缩,设计了一种高分辨率特征图生成机制,增加头部网络的输入特征分辨率,以提升HSFTPH检测密集小目标的效果。设计了新的损失函数USIoU,降低算法位置偏差敏感性。在VisDrone2019数据集上开展实验证明,所提算法在面积最小、密度最高的人类目标的检测任务中实现了mAP50指标10个百分点以上的性能提升。
文摘针对复杂环境下猫眼目标探测易受环境干扰、特征区分度不足等问题,提出一种基于空间上下文的决策级融合猫眼目标检测算法(Decision-level Fusion based on Spatial Context,DFSC)。算法由三个模块组成:在猫眼目标检测模块中,提出基于自适应迭代最大类间方差的图像二值化方法,结合迭代前景细化策略和动态收敛机制,在精确提取猫眼目标连通域的同时保留局部细节信息;构建了傅里叶功率谱和归一化加权质心偏移特征描述子,提升猫眼与干扰目标的可区分性;提出基于自适应环境感知的多维特征加权融合方法,实现特征权重的自适应优化。在通用目标检测模块中,将可变形卷积DCNv3引入YOLOv8骨干网络的C2f模块,提升对遮挡目标和小目标的检测性能。在基于空间上下文的决策级融合模块中,通过计算猫眼目标的遮挡率来评估其与环境干扰目标的空间关系,从而有效抑制虚警。在基于自主研发的激光主动探测系统构建的猫眼目标检测数据集上开展实验,结果表明,与现有主流算法相比,召回率由92.2%提升至98.9%,精度由49.0%提升至74.5%,单帧耗时8.3 ms,显著降低了算法在复杂环境下的虚警率。