Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited...Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.展开更多
The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thou...The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.展开更多
Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In partic...Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.展开更多
Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2...Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2~r to 0, and inevitable backplane curvature, which are different from those of most conventional diffractive optical elements (DOEs), such as static DOEs. For optimal intensity uniformity, equal-intensity multi-beam generation must be considered for these artifacts. We present a tunable-grating method in which the intensity uniformity can be improved by considering the LCSLM artifacts. For instance, tuning phase modulation depth of the grating, called isosceles triangle multilevel phase grating (ITMPG), can be used not only to improve the intensity uniformity, but also to fast steer four beams with narrow beamwidths, determined by the same effective aperture of ITMPG. Improved intensity uniformity and high relative diffraction efficiency are demonstrated through experiments with phase-only LCSLM.展开更多
The extinction ratio and insertion loss of spatial light modulator are subject to the material problem, thus limiting its applications. One reflection-type silicon-based spatial light modulator with high reflective ma...The extinction ratio and insertion loss of spatial light modulator are subject to the material problem, thus limiting its applications. One reflection-type silicon-based spatial light modulator with high reflective materials outside the Fabry-Perot cavity is demonstrated in this paper. The reflectivity values of the outside-cavity materials with different film layer numbers are simulated. The reflectivity values of 6-pair Ta2O5/SiO2 films at 1550 nm are experimentally verified to be as high as 99.9%. The surfaces of 6-pair Ta2O5/SiO2 films are smooth: their root-mean-square roughness values are as small as 0.53 nm. The insertion loss of the device at 1550 nm is only 1.2 dB. The high extinction ratio of the device at 1550 nm and 11 V is achieved to be 29.7 dB. The spatial light modulator has a high extinction ratio and low insertion loss for applications.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
By using an amplitude-type spatial light modulator to load angular spectrum of Mathieu function distribution along a narrow annular pupils, the Durnin’s experimental setup is extended to generate various types of Mat...By using an amplitude-type spatial light modulator to load angular spectrum of Mathieu function distribution along a narrow annular pupils, the Durnin’s experimental setup is extended to generate various types of Mathieu beams. As a special type of Mathieu beams, Bessel beams are also generated using this optical setup. Furthermore, the optical morphology of the Mathieu beams family are also presented and analyzed.展开更多
Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the d...Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the design ideas and the implementing methods of the 2^(2×2) bits type spatial logic steering are discussed; therefore the structure of logical pattern is proposed. Numerical simulation is carried out to verify the design in detail by using the beam propagation method. It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2022YFA1604304)the National Natural Science Foundation of China(Grant No.92250305).
文摘Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
基金Project supported by the National Natural Science Foundation of China (Nos 60578035, 50473040) and the Science Foundation of Jilin Province (Nos 20050520, 20050321-2).
文摘The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.
基金supports from National Natural Science Foundation of China (No.62235009).
文摘Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.
基金supported by the National Natural Science Foundation of China (Grant No. 60878048)the China Postdoctoral Science Foundation (Grant No. 20080440898)
文摘Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2~r to 0, and inevitable backplane curvature, which are different from those of most conventional diffractive optical elements (DOEs), such as static DOEs. For optimal intensity uniformity, equal-intensity multi-beam generation must be considered for these artifacts. We present a tunable-grating method in which the intensity uniformity can be improved by considering the LCSLM artifacts. For instance, tuning phase modulation depth of the grating, called isosceles triangle multilevel phase grating (ITMPG), can be used not only to improve the intensity uniformity, but also to fast steer four beams with narrow beamwidths, determined by the same effective aperture of ITMPG. Improved intensity uniformity and high relative diffraction efficiency are demonstrated through experiments with phase-only LCSLM.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575076 and 61804148)the National Key Research and Development Plan of China(Grant No.2016YFB0402502)
文摘The extinction ratio and insertion loss of spatial light modulator are subject to the material problem, thus limiting its applications. One reflection-type silicon-based spatial light modulator with high reflective materials outside the Fabry-Perot cavity is demonstrated in this paper. The reflectivity values of the outside-cavity materials with different film layer numbers are simulated. The reflectivity values of 6-pair Ta2O5/SiO2 films at 1550 nm are experimentally verified to be as high as 99.9%. The surfaces of 6-pair Ta2O5/SiO2 films are smooth: their root-mean-square roughness values are as small as 0.53 nm. The insertion loss of the device at 1550 nm is only 1.2 dB. The high extinction ratio of the device at 1550 nm and 11 V is achieved to be 29.7 dB. The spatial light modulator has a high extinction ratio and low insertion loss for applications.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674288)
文摘By using an amplitude-type spatial light modulator to load angular spectrum of Mathieu function distribution along a narrow annular pupils, the Durnin’s experimental setup is extended to generate various types of Mathieu beams. As a special type of Mathieu beams, Bessel beams are also generated using this optical setup. Furthermore, the optical morphology of the Mathieu beams family are also presented and analyzed.
基金Project supported by the National Natural Science Foundation of China (Grant No 60477018) and the Major Program of the National Natural Science Foundation of China (Grant No 60436020).
文摘Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the design ideas and the implementing methods of the 2^(2×2) bits type spatial logic steering are discussed; therefore the structure of logical pattern is proposed. Numerical simulation is carried out to verify the design in detail by using the beam propagation method. It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.