期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
考虑空间相关性的MSCNN LSTM Attention能见度预测模型
1
作者 王小建 苏彤 +6 位作者 马飞 林智婕 白元旦 郭庆元 魏俊涛 黄凯 徐玉凤 《安全与环境学报》 北大核心 2025年第4期1622-1632,共11页
准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convoluti... 准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convolutional Neural Network, MSCNN)提取能见度以预测各影响因素下不同精细度的空间特征,并将其进行线性融合得到多因素空间特征,实现对能见度预测影响因素的空间特征提取;利用Attention机制加强对关键信息关注的优势以对长短期记忆神经网络(Long-Short Term Memory Neural Network, LSTM)方法进行改进,进而增强模型对重要时序信息关注的能力和模型预测的准确性,实现在考虑影响因素空间相关性下对能见度的预测。以2021—2023年西安市逐时气象数据和污染物数据为试验数据,采用均方根误差(RMSE)、平均绝对误差(MAE)和R2指标对模型进行评价。试验结果显示,研究模型MAE下降26.3%~39.1%,RMSE下降25%~40%,R2提升3.7%~16.4%,能见度预测精度较高。 展开更多
关键词 环境科学技术基础学科 能见度预测 空间相关性 一维多尺度卷积神经网络 长短期记忆神经网络 注意力机制
在线阅读 下载PDF
基于GADF与SAM-LCNN机制的石化离心风机轴承故障诊断方法
2
作者 刘森 刘美 +2 位作者 韩惠子 崔坤 陈曦 《机电工程》 北大核心 2025年第1期72-81,共10页
针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差... 针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差场将轴承一维振动信号编码为二维图像;然后,构建了融合空间注意力机制的轻量化卷积神经网络;最后,将GADF转换所得二维图像作为融合空间注意力机制的轻量化卷积神经网络的输入,进行了特征提取与故障诊断,分别采用了广东石油化工学院的石化多级离心风机轴承故障数据集与凯斯西储大学轴承故障数据集,对该方法的有效性及优越性进行了验证。研究结果表明:两种数据集的测试集分类准确率分别为99.7%和98.5%;相较于卷积神经网络(CNN)、LeNet-5和MobileNetV2三种对比方法,该离心风机滚动轴承诊断方法具有诊断精度高、诊断速度快和泛化能力强等优点。该方法能够有效地对石化离心风机轴承故障振动信号进行分类,可为石化安全生产提供保障,同时也为其他机械设备故障诊断提供参考。 展开更多
关键词 离心风机 滚动轴承 图像编码 格拉姆角场 轻量化卷积神经网络 空间注意力机制
在线阅读 下载PDF
一种基于SAM-MSFF网络的低照度目标检测方法 被引量:3
3
作者 江泽涛 李慧 +3 位作者 雷晓春 朱玲红 施道权 翟丰硕 《电子学报》 EI CAS CSCD 北大核心 2024年第1期81-93,共13页
由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature F... 由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature Fusion,SAM-MSFF)的低照度目标检测方法 .该方法首先通过多尺度交互内存金字塔融合多尺度特征,增强低照度图像特征中的有效信息,并设置内存向量存储样本的特征,捕获样本之间的潜在关联性;然后,引入空间感知注意力机制获取特征在空间域的长距离上下文信息和局部信息,从而增强低照度图像中的目标特征,抑制背景信息和噪声的干扰;最后,利用多感受野增强模块扩张特征的感受野,对具有不同感受野的特征进行分组重加权计算,使检测网络根据输入的多尺度信息自适应地调整感受野的大小.在ExDark数据集上进行实验,本文方法的平均精度(mean Average Precision,mAP)达到77.04%,比现有的主流目标检测方法提高2.6%~14.34%. 展开更多
关键词 低照度图像 目标检测 空间感知注意力机制 多尺度特征融合 多感受野增强模块
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
4
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
复杂场景下的多人人体姿态估计算法
5
作者 石磊 王天宝 +3 位作者 孟彩霞 王清贤 高宇飞 卫琳 《郑州大学学报(理学版)》 北大核心 2025年第4期1-7,共7页
复杂场景下人员的交叉遮挡,导致现有的人体姿态估计算法存在准确度不高和人体骨架错连的问题。为此,提出一种复杂场景下的多人人体姿态估计优化算法。首先,使用分组分块级联卷积替换普通卷积,结合特征融合促进特征通道之间的信息交互,... 复杂场景下人员的交叉遮挡,导致现有的人体姿态估计算法存在准确度不高和人体骨架错连的问题。为此,提出一种复杂场景下的多人人体姿态估计优化算法。首先,使用分组分块级联卷积替换普通卷积,结合特征融合促进特征通道之间的信息交互,在不引入额外计算成本的前提下提高算法精度;其次,引入空间注意力机制挖掘与人体姿态估计任务相关的空间语义特征,将网络结构并行化处理以提高算法性能;最后,对大卷积核和空间注意力机制的嵌入位置进行轻量化处理,减少时间开销。与现有的自底向上的姿态估计算法OpenPifPaf++相比,所提算法在COCO 2017数据集上平均准确率提高0.8个百分点;在CrowdPose数据集上平均准确率比OpenPifPaf算法提高1.2个百分点,复杂场景下对应的准确率提高1.5个百分点。 展开更多
关键词 复杂场景 多人人体姿态估计 分组卷积 空间注意力机制 轻量化
在线阅读 下载PDF
多阶段渐进处理的图像去雨方法
6
作者 廉继红 王平 +1 位作者 李英 李云红 《西北大学学报(自然科学版)》 北大核心 2025年第2期297-308,共12页
针对现有图像去雨方法中存在雨纹去除不彻底、纹理信息丢失等问题,提出一种多阶段渐进式处理的图像去雨算法,可以同时将上下阶段的特征融合,使去雨算法的性能有很大的提高。该去雨网络模型由3个阶段构成。前2个阶段采用改进后的U-Net编... 针对现有图像去雨方法中存在雨纹去除不彻底、纹理信息丢失等问题,提出一种多阶段渐进式处理的图像去雨算法,可以同时将上下阶段的特征融合,使去雨算法的性能有很大的提高。该去雨网络模型由3个阶段构成。前2个阶段采用改进后的U-Net编码器解码器结构学习多尺度上下文特征信息,特征提取部分采用有效通道注意力机制(efficient channel attention network,ECANet),使网络模型参数变小,更加轻量级;第3阶段加入并行注意力机制(parallel attention subnetwork,PASNet),在学习上下文信息和空间细节特征的同时还能生成高分辨率特征,更好地保留图像的输出细节。此外,还引入监督注意力模块(supervised attention module,SAM)以加强特征学习。实验结果表明,在数据集Rain100H上PSNR达到29.37 dB,SSIM为0.88;在Test1200上PSNR达到32.50 dB,SSIM为0.93,验证了所提方法在图像去雨任务上的有效性。 展开更多
关键词 图像去雨 特征提取 监督注意力 并行注意力机制 空间细节
在线阅读 下载PDF
三维人体姿态估计中的多尺度时空特征融合
7
作者 张宇 刘骊 +2 位作者 付晓东 刘利军 彭玮 《计算机辅助设计与图形学学报》 北大核心 2025年第1期75-88,共14页
针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注... 针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注意力机制和多层感知机构建空间多尺度特征融合模块,融合关节点、肢体和上/下身三个空间多尺度特征,得到初步姿态特征序列;最后建立时序多尺度编码进行时序特征融合获得最终姿态特征序列,并通过时序解码,优化生成细化的三维人体姿态.在Human3.6M数据集上的实验结果表明,所提方法的平均每关节位置P-MPJPE和速度误差MPJVE分别为33.6和2.4,较对比方法降低了2.3%和4.0%,能够降低计算复杂度,提高三维人体姿态估计精度,生成准确、平滑的三维人体姿态估计结果.此外,在HumanEva-I数据集的测试结果表明,所提方法也具有一定的泛化性. 展开更多
关键词 三维人体姿态估计 多尺度特征 自注意力机制 时空特征融合 时序编码
在线阅读 下载PDF
自适应采样与重影多尺度特征融合的轻量化焊缝缺陷检测
8
作者 鲁斌 杨烜 +1 位作者 杨振宇 高啸天 《系统仿真学报》 北大核心 2025年第8期1978-1990,共13页
为提升焊接缺陷识别的准确率和速度,并实现模型的轻量化,提出了一种基于YOLOv8的轻量化焊缝缺陷检测网络LAW-YOLO(light adaptive-weight sampling-YOLO)。设计了一种轻量级自适应权重采样LAWS模块,通过学习感受野区域内交互的特征来构... 为提升焊接缺陷识别的准确率和速度,并实现模型的轻量化,提出了一种基于YOLOv8的轻量化焊缝缺陷检测网络LAW-YOLO(light adaptive-weight sampling-YOLO)。设计了一种轻量级自适应权重采样LAWS模块,通过学习感受野区域内交互的特征来构建自适应权重注意力特征图。采用优化的高效加权双向特征金字塔网络作为LAW-YOLO中的特征提取网络,设计重影多尺度采样模块并引用了混合注意力机制,以增强对小目标缺陷的检测能力。实验结果表明:该方法在SteelTube数据集中mAP0.5达到97.6%,处理数据速度可达91帧/s,比基线模型提高了5.5%的平均精度及4.6%的处理速度,在保持高效性能的同时减少了25.3%的计算量和50%的模型大小,更便于部署在边缘设备上进行场景作业。 展开更多
关键词 缺陷检测 YOLOv8 重影多尺度卷积 感受野空间特征 混合注意力机制
在线阅读 下载PDF
基于多尺度渐近金字塔的太阳电池缺陷检测网络
9
作者 朱磊 耿萃萃 +3 位作者 李博涛 潘杨 张博 姚丽娜 《太阳能学报》 北大核心 2025年第5期267-274,共8页
以YOLOv8网络为基础提出一种多尺度渐近金字塔网络MSANet。首先使用带有分层特征融合结构的特征提取块M-Block替换常规卷积层,以增强网络对多尺度目标的特征提取能力;其次引入空间注意力机制(SRU),抑制背景区域的特征冗余,使网络能更关... 以YOLOv8网络为基础提出一种多尺度渐近金字塔网络MSANet。首先使用带有分层特征融合结构的特征提取块M-Block替换常规卷积层,以增强网络对多尺度目标的特征提取能力;其次引入空间注意力机制(SRU),抑制背景区域的特征冗余,使网络能更关注重点区域的同时减少参数量的引入;最后提出一种改进渐近金字塔网络AFPNa结构,缓解网络在特征融合过程中信息的丢失或退化问题,提升缺陷检测精度。实验结果表明,与YOLOv8原模型及RTMDET等7种先进检测网络相比,MSANet具有更高的检测精度,相较原模型均值平均精度提升5.7个百分点。 展开更多
关键词 缺陷检测 深度学习 太阳电池 分层特征融合结构 多尺度渐近金字塔 空间注意力机制
在线阅读 下载PDF
基于岩石薄片图像与改进EfficientNet建模的岩性识别方法
10
作者 程国建 李宗祥 +2 位作者 李秋实 韩江 孙亚招 《西安石油大学学报(自然科学版)》 北大核心 2025年第2期124-134,共11页
为了实现岩石薄片岩性高效、准确的分类与识别,提出了一种基于空间注意力与多尺度融合的岩石薄片岩性识别方法。采用多尺度融合的策略,通过多个EfficientNet中的轻量反转瓶颈卷积核(MBConv)对橄榄石、普通辉石、角闪石、黑云母等多种类... 为了实现岩石薄片岩性高效、准确的分类与识别,提出了一种基于空间注意力与多尺度融合的岩石薄片岩性识别方法。采用多尺度融合的策略,通过多个EfficientNet中的轻量反转瓶颈卷积核(MBConv)对橄榄石、普通辉石、角闪石、黑云母等多种类别的岩石薄片图像进行特征提取,以捕获更多的细节信息。引入空间注意力模块(SGE),融合岩石薄片图像中的空间特征信息。此外,采用Ranger优化器,改善模型的性能及收敛速度。实验表明:提出的MFSRE(Multi-Scale Fusion-SGE-Ranger-EfficientNet)模型在测试集上的召回率、F1分数分别为98.25%、98.29%,具有较高的识别准确率,相较于ShuffleNet、RegNet、MobileNetV2网络具有更好的分类效果。 展开更多
关键词 岩性识别 岩石薄片图像 EfficientNet 空间注意力机制
在线阅读 下载PDF
改进YOLOv7算法的钢板表面缺陷检测方法
11
作者 孙超 刘均学 +3 位作者 陈正超 周永康 张承瑞 丁建军 《实验室研究与探索》 北大核心 2025年第1期19-23,29,共6页
针对钢板表面不同种类缺陷特征难以辨别的问题,提出了一种基于改进YOLOv7算法的钢板表面缺陷检测方法。使用特征提取网络(C2f)加强特征信息的提取,在不影响原始梯度路径的情况下提高神经网络对重要特征的学习能力,避免缺陷的误检。结合... 针对钢板表面不同种类缺陷特征难以辨别的问题,提出了一种基于改进YOLOv7算法的钢板表面缺陷检测方法。使用特征提取网络(C2f)加强特征信息的提取,在不影响原始梯度路径的情况下提高神经网络对重要特征的学习能力,避免缺陷的误检。结合空间自适应注意力机制(CA)构建了多路径特征和通道交叉注意力机制(MPCC),提高对细微缺陷的敏感性,避免缺陷的漏检。在此基础上,采用距离交并比损失函数DIoU作为损失函数,降低模型损失函数的复杂度,从而提高模型的实时性和鲁棒性。钢板表面检测实验结果表明,改进YOLOv7算法在NEU-DET数据集上的检测精度达到了83.7%。与YOLOv7算法相比,改进后的算法在检测精度和速度上都有显著提升。 展开更多
关键词 钢板表面缺陷检测 空间自适应注意力机制 改进算法
在线阅读 下载PDF
考虑风速空间异质性的LSTM-AM雾天能见度预测模型
12
作者 王小建 林智婕 +4 位作者 马飞 苏彤 白元旦 郭庆元 黄凯 《气候与环境研究》 北大核心 2025年第4期439-449,共11页
针对现有方法在雾天能见度预测时对风速空间异质性考虑不足导致预测准确性和稳定性不高的问题,构建了考虑风速空间异质性的长短期记忆神经网络—注意力机制(LSTM-AM)雾天能见度预测模型。利用半变异函数对风速不同空间位置的变化特征进... 针对现有方法在雾天能见度预测时对风速空间异质性考虑不足导致预测准确性和稳定性不高的问题,构建了考虑风速空间异质性的长短期记忆神经网络—注意力机制(LSTM-AM)雾天能见度预测模型。利用半变异函数对风速不同空间位置的变化特征进行量化,融合邻近点空间分布及风速差异信息,采用风向夹角和变异值对风速空间异质性特征进行加权,实现对风速空间异质性的有效提取;利用AM机制能加强对关键信息关注的优势对LSTM方法进行改进,以有效捕捉和反映关键时刻气象因子对雾天能见度的影响,增强模型对重要时序信息关注的能力和模型预测的准确性,实现风速空间异质性下对雾天能见度的预测。研究结果表明,本文模型相关系数提升10%~20%,均方根误差下降25%~40%,平均绝对误差下降26.3%~39.1%,具有较高的雾天能见度预测精度。 展开更多
关键词 空间异质性 半变异函数 长短期记忆神经网络 注意力机制 雾天能见度
在线阅读 下载PDF
基于声纹识别的永磁同步电机运行状态监测
13
作者 丁惜瀛 付直刚 马少华 《沈阳工业大学学报》 北大核心 2025年第2期145-151,共7页
【目的】在传统永磁电机故障监测领域,接触式信号虽被广泛使用,但通常只能反映电机的单一运行状态且信息量不足,难以识别永磁同步电机的全面运行状态。为丰富信息量,需要额外增加传感器,但这不仅增加了系统的复杂性,还提高了实际应用难... 【目的】在传统永磁电机故障监测领域,接触式信号虽被广泛使用,但通常只能反映电机的单一运行状态且信息量不足,难以识别永磁同步电机的全面运行状态。为丰富信息量,需要额外增加传感器,但这不仅增加了系统的复杂性,还提高了实际应用难度。因此,提高永磁电机状态监测的精度与便捷性成为重要的研究目标。随着智能化监测技术的发展,非接触式信号的应用越来越受到关注。永磁电机运行时产生的音频信号包含了丰富的状态信息,为故障诊断提供了新的方向。相较于接触式信号,音频信号能实时反映由故障引起的电机振动、噪声等特征,有较大的研究价值。然而这类信号易受环境噪声的干扰,导致信号质量差、特征信息不清晰,不利于永磁同步电机的状态监测。针对上述问题,提出了一种基于声纹识别的永磁同步电机深度学习模型,旨在通过深度学习技术高效地监测和诊断电机运行状态。【方法】采用小波去噪算法减少噪声干扰,提升信号质量,进而提升信噪比,确保模型能够更清晰地提取梅尔谱特征,为故障识别和分类奠定基础。然而,直接使用卷积神经网络提取梅尔谱特征可能会削弱特征间的关联性,影响故障识别的精度。引入空间注意力机制,通过加权增强特征的空间位置相关性,使模型关注最关键的部分,提高特征提取的有效性。为提升模型的识别准确率,对梅尔谱特征进行归一化处理,并采用AAM-softmax损失函数。该函数通过强化类间约束,提高模型在不同类别之间的区分能力,进而提升识别精度和泛化能力并优化训练过程,使模型更好地适应不同工况。【结果】仿真测试结果表明,所提出的模型在训练集上表现出色,能够准确识别电机的不同运行状态,并在测试集上展现出较强的泛化能力。实验结果证实,基于深度学习的声纹识别方法能够有效监测永磁电机的多种运行状态,准确度较高且实用性较强。【结论】基于声纹识别的永磁同步电机深度学习模型能够有效去除噪声并提取关键特征。通过引入空间注意力机制和AAM-softmax损失函数,显著提升了模型的识别精度和泛化能力。该模型具有广阔的发展前景,可广泛应用于永磁电机的状态监测与故障诊断,推动电机智能化维护技术的发展。 展开更多
关键词 电机监测 声纹识别 小波去噪 损失函数 空间注意力机制 永磁同步电机
在线阅读 下载PDF
改进YOLOv7的高效煤矿烟火检测算法
14
作者 刘春霞 张凯强 +2 位作者 潘理虎 龚大立 谢斌红 《计算机工程与设计》 北大核心 2025年第6期1832-1840,共9页
为解决煤矿烟火检测中速度缓慢和图像背景干扰问题,提出一种基于YOLOv7改进的检测算法。通过设计SlimNeck结构重构颈部网络实现模型轻量化;采用WIoUv3减轻低质量训练集的影响;在ELAN结构融入EMA模块,减少信息转换过程中的损失;引入具备... 为解决煤矿烟火检测中速度缓慢和图像背景干扰问题,提出一种基于YOLOv7改进的检测算法。通过设计SlimNeck结构重构颈部网络实现模型轻量化;采用WIoUv3减轻低质量训练集的影响;在ELAN结构融入EMA模块,减少信息转换过程中的损失;引入具备多种感知能力的动态检测头提升模型表现力。实验结果表明,改进后的模型mAP提升了3.2%,同时模型的参数量和计算量分别减少了0.59 MB和2.2 G。检测速度达到了18.1 ms,保证了高精度,满足实时监测的需求。 展开更多
关键词 目标检测 空间语义信息转换 注意力机制 边界框回归函数 动态检测头 煤矿烟火 轻量化网络
在线阅读 下载PDF
自然环境下改进YOLOv5对小目标苹果的检测
15
作者 刘子龙 张磊 《系统仿真学报》 北大核心 2025年第8期2124-2138,共15页
针对苹果的分布通常会存在遮挡、小目标,以及密集目标等问题,提出了一种改进YOLOv5的目标检测算法。在YOLOv5的基础上加入了坐标注意力机制、感受野模块,以及自适应空间特征融合,加强了对小目标检测的能力。将YOLOv5中使用的CIoU替换为... 针对苹果的分布通常会存在遮挡、小目标,以及密集目标等问题,提出了一种改进YOLOv5的目标检测算法。在YOLOv5的基础上加入了坐标注意力机制、感受野模块,以及自适应空间特征融合,加强了对小目标检测的能力。将YOLOv5中使用的CIoU替换为了SIoU,提高了目标检测框的位置预测精度。将部分普通卷积替换为了深度可分离卷积,减少了计算量。实验结果表明:改进YOLOv5的综合性能要优于原始YOLOv5及其他算法,mAP值相比原始YOLOv5提升了9.6%。 展开更多
关键词 智能农业 坐标注意力机制 感受野 自适应空间特征融合 小目标检测 YOLOv5
在线阅读 下载PDF
基于多重注意力机制的时空频融合的脑电情绪识别方法
16
作者 潘雨青 张琬琳 +1 位作者 任庆桦 许峰 《小型微型计算机系统》 北大核心 2025年第9期2098-2104,共7页
近年来,脑电情绪识别在心理治疗和人机交互领域展现了重要的应用前景.然而,现有研究大多未能充分挖掘脑电信号中复杂时空频模式的耦合和互补性特征.本文提出了一种基于多重注意力机制解耦时空频融合特征的网络模型,以有针对性地捕捉脑... 近年来,脑电情绪识别在心理治疗和人机交互领域展现了重要的应用前景.然而,现有研究大多未能充分挖掘脑电信号中复杂时空频模式的耦合和互补性特征.本文提出了一种基于多重注意力机制解耦时空频融合特征的网络模型,以有针对性地捕捉脑电信号的时空域与空频域互补特征.该模型通过将多域融合特征解耦为时间流模块、空间增强模块以及频域流模块,同时将空间注意力机制与频域注意力机制聚合到该网络模型中,从而更有效地提取信号中的关键判别信息.在DEAP数据集上进行了大量实验,实验结果表明,该模型在唤醒度和效价维度上的准确率分别达到了93.68%和92.96%,优于现有模型,证明了其在提升情绪识别性能方面的优越性. 展开更多
关键词 脑电图 时空频特征 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于多浮标空间多特征融合的海水溶解氧浓度预测
17
作者 朱奇光 申震 +4 位作者 李享 魏祯 乔文静 张淋淞 陈颖 《海洋学报》 北大核心 2025年第1期104-116,共13页
溶解氧浓度是衡量海水水质的重要指标之一。为了及时掌握海水水质变化情况,降低海水污染风险及其带来的损失,建立海洋水质参数预测机制至关重要。为此,本文提出了一种基于浮标网络时空信息融合和改进生成对抗网络(Generative Adversaria... 溶解氧浓度是衡量海水水质的重要指标之一。为了及时掌握海水水质变化情况,降低海水污染风险及其带来的损失,建立海洋水质参数预测机制至关重要。为此,本文提出了一种基于浮标网络时空信息融合和改进生成对抗网络(Generative Adversarial Networks,GAN)的海水溶解氧浓度预测模型,旨在整合监测区域内浮标网络的拓扑信息并实现浮标传感器的多特征融合。该模型利用图注意力网络(Graph Attention Mechanism,GAT)挖掘不同近邻点对目标节点的影响,计算邻接节点的权重,从而捕获浮标数据的时空特征;通过双头注意力机制与双时间尺度更新规则(Two Time-Scale Update Rule,TTUR)优化GAN预测网络及网络训练过程,改善生成对抗网络的训练速度平衡问题,提高生成器网络的拟合效果。以均方误差、均方根误差、平均绝对误差与决定系数为评价指标进行模型预测性能对比,结果表明,所提出模型的各项评价指标均优于其他模型,能够有效挖掘多浮标的空间信息,克服了传统方法在海水溶解氧浓度预测中存在的精度低、无法灵活利用历史空间数据、训练稳定性差和速度慢等不足,可为海洋水质监测及预测提供重要的技术支撑。 展开更多
关键词 溶解氧浓度预测 空间多特征融合 GAT GAN TTUR
在线阅读 下载PDF
基于改进YOLOv7-tiny的硅钢片表面缺陷检测算法
18
作者 李克讷 陈福丁 +2 位作者 李永革 樊香所 陈健民 《组合机床与自动化加工技术》 北大核心 2025年第2期171-176,共6页
针对硅钢片表面缺陷检测容易出现漏检、检测区域不准确、多重检测等问题,提出一种改进YOLOv7-tiny的硅钢片表面缺陷检测算法:SMCS-YOLOv7 tiny算法。首先,基于SimAM注意力机制构建ELAN-SIM模块,增强模型对目标特征信息的提取能力;其次,... 针对硅钢片表面缺陷检测容易出现漏检、检测区域不准确、多重检测等问题,提出一种改进YOLOv7-tiny的硅钢片表面缺陷检测算法:SMCS-YOLOv7 tiny算法。首先,基于SimAM注意力机制构建ELAN-SIM模块,增强模型对目标特征信息的提取能力;其次,使用Mish激活函数代替原网络中的Leaky ReLU激活函数,提高模型的非线性特征提取能力;再次,在Neck层添加CoordConv模块,增强模型的空间感知能力;最后,采用SIoU损失函数加快模型收敛速度。实验结果表明,SMCS-YOLOv7 tiny算法在硅钢片缺陷数据集上的准确度P、召回率R、mAP@0.5分别达到88%、78.1%和85.7%,较原YOLOv7-tiny算法分别提高了2.2%、3%和2.5%。相比传统的硅钢片表面缺陷检测方法,提出的算法实现了更精准检测效果。 展开更多
关键词 缺陷检测 YOLOv7-tiny 注意力机制 空间感知 损失函数
在线阅读 下载PDF
MDA-MIM:一种融合多尺度特征与双重注意力机制的雷达回波图预测模型
19
作者 胡强 高雅婷 +1 位作者 尹宾礼 渠连恩 《通信学报》 北大核心 2025年第3期248-257,共10页
为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间... 为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间位置的权重,更精确地捕捉雷达回波数据中的非平稳性特征。在平稳模块引入局部注意力机制,以聚焦于局部区域内的特征关联,增强对平稳性特征的捕捉能力。真实数据集上的实验结果表明,MDA-MIM具有优秀的预测性能,在MSE、MAE、SSIM和PSNR等指标上均优于对比模型。 展开更多
关键词 雷达回波图 时空预测 注意力机制 多尺度特征
在线阅读 下载PDF
基于序列图时空增强与地理关系的兴趣点推荐
20
作者 刘超 朱军 《计算机应用研究》 北大核心 2025年第3期755-761,共7页
针对现有兴趣点(points-of-interest,POI)推荐存在的地理特征挖掘不充分与未将顺序信息纳入空间偏好的问题,提出基于序列图时空增强与地理关系(spatial-temporal enhancement of sequence graph and geographical relationships,STESGGR... 针对现有兴趣点(points-of-interest,POI)推荐存在的地理特征挖掘不充分与未将顺序信息纳入空间偏好的问题,提出基于序列图时空增强与地理关系(spatial-temporal enhancement of sequence graph and geographical relationships,STESGGR)的POI推荐模型。首先,利用POI位置信息构建地理图,采用图卷积网络(graph convolutional network,GCN)与注意力机制获取用户访问POI的地理特征。其次,利用用户签到信息提取时空特征构建时空信息增强的序列图,采用门图神经网络(gated graph neural network,GGNN)与注意力机制获取用户访问POI的时空偏好。然后,引入共同性学习优化框架学习顺序信息与地理特征之间的互补信息,进一步挖掘地理特征。最后,融合两个特征信息并通过多层感知机(multilayer perceptron,MLP)进行POI推荐。在五个真实数据集上进行了实验,结果表明STESGGR模型在AUC和Logloss指标上分别提升1.2%~2.7%和3.2%~12.4%。实验证明STESGGR在基于位置的POI推荐下有较好的表现,充分挖掘了顺序与地理特征,提升了推荐效果。 展开更多
关键词 POI推荐 时空信息 地理信息 顺序信息 注意力机制
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部