The hydrogeochemical parameters of Jiangjia Spring,the outlet of Qingrnuguan underground river system(QURS) in Chongqing,were found responding rapidly to storm events in late April,2008.A total of 20 kinds of hydrogeo...The hydrogeochemical parameters of Jiangjia Spring,the outlet of Qingrnuguan underground river system(QURS) in Chongqing,were found responding rapidly to storm events in late April,2008.A total of 20 kinds of hydrogeochemical parameters,including discharge,specific conductance,pH,water tempera-展开更多
The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third...The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.展开更多
Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dim...Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively.展开更多
为了提高锂离子电池健康状态(state of health,SOH)估计的精确度,本研究结合卷积神经网络(convolutional neural networks,CNN)强大的局部特征提取能力和Transformer的序列处理能力,提出了基于多项式特征扩展的CNN-Transformer融合模型...为了提高锂离子电池健康状态(state of health,SOH)估计的精确度,本研究结合卷积神经网络(convolutional neural networks,CNN)强大的局部特征提取能力和Transformer的序列处理能力,提出了基于多项式特征扩展的CNN-Transformer融合模型。该方法提取了与电池容量高度相关的增量容量(incremental capacity,IC)曲线峰值、IC曲线对应电压、面积及充电时间作为健康因子,然后将其进行多项式扩展,增加融合模型对输入特征的非线性处理能力。引入主成分分析法(principal component analysis,PCA)对特征空间进行降维,有利于捕获数据有效信息,减少模型训练时间。采用美国国家宇航局(National Aeronautics and Space Administration,NASA)数据集和马里兰大学数据集,通过加入多项式特征前后的CNN-Transformer模型对比、加入多项式特征的CNN-Transformer模型和单一模型算法对比,验证了加入多项式特征的CNN-Transformer融合算法的有效性和精确度,结果表明提出模型的SOH估计精度相较于未加入多项式特征的CNN-Transformer模型,对于B0005、B0006、B0007、B0018数据集分别提高了38.71%、50.28%、4.71%、17.58%。展开更多
降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群...降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群点的影响。然而,这些算法忽略了数据的固有局部结构,导致数据的本质结构信息丢失,从而影响了对噪声和离群点的准确辨识和移除,进而影响了后续算法的性能。因此,该文提出了基于Soft均值滤波的鲁棒主成分分析(Robust Principal Component Analysis Based on Soft Mean Filtering,RPCA-SMF)算法。RPCA-SMF采用Soft均值滤波的思想,通过两步走的形式,不仅在模型学习前对噪声处理,同时在模型学习后也引入了噪声处理机制。具体而言,RPCA-SMF算法首先引入了均值滤波的相关思想,通过对比样本与其局部近邻这两者和局部均值的偏差对样本进行Soft加权,从而对噪声进行判定。随后,通过第一步获取的关于噪声的“判别知识”处理噪声信息。由于均值滤波能有效保留数据的整体轮廓信息,因此对于被识别为噪声的样本,RPCA-SMF算法强调保留其低频整体轮廓信息,而非高频的噪声信息。这样能够有效地保留数据中的有用信息,提高对数据整体结构特征的保留能力,使得算法具有较强的鲁棒性和较好的泛化性。展开更多
针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF...针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF)算法提取RGB图像特征点,利用Brute-Force算法进行初始匹配,采用随机采样一致性算法优化匹配,得到单应矩阵和旋转平移矩阵,求解汽车零配件初始位姿。进一步采用主成分分析法和双向KD树近邻搜索算法对预处理后的点云数据进行精确配准。实验结果表明,所提算法相较ICP算法,在配准速度和精度上分别提高了87.2%和5.0%,相对于FR-ICP(fast and robust iterative closest point)算法,在配准精度相当的情况下,配准速度提高了55%。展开更多
文摘The hydrogeochemical parameters of Jiangjia Spring,the outlet of Qingrnuguan underground river system(QURS) in Chongqing,were found responding rapidly to storm events in late April,2008.A total of 20 kinds of hydrogeochemical parameters,including discharge,specific conductance,pH,water tempera-
基金This work was supported by the General Design Department,China Academy of Space Technology(10377).
文摘The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.
基金the National Natural Science of China (50675167)a Foundation for the Author of National Excellent Doctoral Dissertation of China(200535)
文摘Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively.
文摘为了提高锂离子电池健康状态(state of health,SOH)估计的精确度,本研究结合卷积神经网络(convolutional neural networks,CNN)强大的局部特征提取能力和Transformer的序列处理能力,提出了基于多项式特征扩展的CNN-Transformer融合模型。该方法提取了与电池容量高度相关的增量容量(incremental capacity,IC)曲线峰值、IC曲线对应电压、面积及充电时间作为健康因子,然后将其进行多项式扩展,增加融合模型对输入特征的非线性处理能力。引入主成分分析法(principal component analysis,PCA)对特征空间进行降维,有利于捕获数据有效信息,减少模型训练时间。采用美国国家宇航局(National Aeronautics and Space Administration,NASA)数据集和马里兰大学数据集,通过加入多项式特征前后的CNN-Transformer模型对比、加入多项式特征的CNN-Transformer模型和单一模型算法对比,验证了加入多项式特征的CNN-Transformer融合算法的有效性和精确度,结果表明提出模型的SOH估计精度相较于未加入多项式特征的CNN-Transformer模型,对于B0005、B0006、B0007、B0018数据集分别提高了38.71%、50.28%、4.71%、17.58%。
文摘降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群点的影响。然而,这些算法忽略了数据的固有局部结构,导致数据的本质结构信息丢失,从而影响了对噪声和离群点的准确辨识和移除,进而影响了后续算法的性能。因此,该文提出了基于Soft均值滤波的鲁棒主成分分析(Robust Principal Component Analysis Based on Soft Mean Filtering,RPCA-SMF)算法。RPCA-SMF采用Soft均值滤波的思想,通过两步走的形式,不仅在模型学习前对噪声处理,同时在模型学习后也引入了噪声处理机制。具体而言,RPCA-SMF算法首先引入了均值滤波的相关思想,通过对比样本与其局部近邻这两者和局部均值的偏差对样本进行Soft加权,从而对噪声进行判定。随后,通过第一步获取的关于噪声的“判别知识”处理噪声信息。由于均值滤波能有效保留数据的整体轮廓信息,因此对于被识别为噪声的样本,RPCA-SMF算法强调保留其低频整体轮廓信息,而非高频的噪声信息。这样能够有效地保留数据中的有用信息,提高对数据整体结构特征的保留能力,使得算法具有较强的鲁棒性和较好的泛化性。
文摘针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF)算法提取RGB图像特征点,利用Brute-Force算法进行初始匹配,采用随机采样一致性算法优化匹配,得到单应矩阵和旋转平移矩阵,求解汽车零配件初始位姿。进一步采用主成分分析法和双向KD树近邻搜索算法对预处理后的点云数据进行精确配准。实验结果表明,所提算法相较ICP算法,在配准速度和精度上分别提高了87.2%和5.0%,相对于FR-ICP(fast and robust iterative closest point)算法,在配准精度相当的情况下,配准速度提高了55%。