Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially loc...Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially localized, partsbased subspace representation of objects. An improvement of the classical NMF by combining with Log-Gabor wavelets to enhance its part-based learning ability is presented. The new method with principal component analysis (PCA) and locally linear embedding (LIE) proposed recently in Science are compared. Finally, the new method to several real world datasets and achieve good performance in representation and classification is applied.展开更多
针对传统协同过滤(CF)存在的数据稀疏和冷启动的问题以及在矩阵分解方法生成结果矩阵的过程中由于各种变换产生误差的问题,提出一种混合信息增强的低秩稀疏矩阵分解(LSMF)论文推荐方法。首先,利用预训练的文档级表示学习和引文感知转换...针对传统协同过滤(CF)存在的数据稀疏和冷启动的问题以及在矩阵分解方法生成结果矩阵的过程中由于各种变换产生误差的问题,提出一种混合信息增强的低秩稀疏矩阵分解(LSMF)论文推荐方法。首先,利用预训练的文档级表示学习和引文感知转换器SPECTER(Scientific Paper Embeddings using Citation-informed TransformERs)学习论文的表示,计算并构造文章之间的相似度矩阵,将相似度矩阵与引文矩阵相加得到一个混合信息矩阵;其次,通过矩阵乘法将内容相似信息与引用信息融入到论文-作者矩阵中;最后,利用LSMF模型分解论文-作者矩阵以得到推荐列表。在ACL文集网络(AAN)和DBLP数据集上的实验结果表明,所提方法取得了较好的推荐性能,且所提方法引入内容信息与引用信息的方式同样适用于其他矩阵分解模型。对于非负矩阵分解(NMF)、奇异值分解(SVD)、低秩稀疏矩阵补全(LSMC)和去分解(GoDec),利用混合信息后的模型比未利用混合信息的原模型在2个数据集上的前30个推荐结果的召回率(R@30)分别提升了18.72、7.43、11.53、14.62和20.58、2.11、7.91、5.01个百分点。展开更多
该文提出一种部分基矩阵稀疏约束的非负矩阵分解(Non-negative Matrix Factorization with Sparseness Constraints on Parts of the Basis Matrix,NMFSCPBM)方法,其次将水印嵌入在NMFSCPBM分解后的基矩阵大系数中,利用NMFSCPBM提取视...该文提出一种部分基矩阵稀疏约束的非负矩阵分解(Non-negative Matrix Factorization with Sparseness Constraints on Parts of the Basis Matrix,NMFSCPBM)方法,其次将水印嵌入在NMFSCPBM分解后的基矩阵大系数中,利用NMFSCPBM提取视频运动特征自适应控制水印嵌入强度。最后,在水印检测时,只要残余视频中包含有视频最小剩余子块数,就可以恢复出完整基矩阵,进而提取出完整水印。实验表明,与同类方法相比,该方法抵抗强剪切攻击的能力获得了较大程度提升。展开更多
文摘Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially localized, partsbased subspace representation of objects. An improvement of the classical NMF by combining with Log-Gabor wavelets to enhance its part-based learning ability is presented. The new method with principal component analysis (PCA) and locally linear embedding (LIE) proposed recently in Science are compared. Finally, the new method to several real world datasets and achieve good performance in representation and classification is applied.
文摘针对传统协同过滤(CF)存在的数据稀疏和冷启动的问题以及在矩阵分解方法生成结果矩阵的过程中由于各种变换产生误差的问题,提出一种混合信息增强的低秩稀疏矩阵分解(LSMF)论文推荐方法。首先,利用预训练的文档级表示学习和引文感知转换器SPECTER(Scientific Paper Embeddings using Citation-informed TransformERs)学习论文的表示,计算并构造文章之间的相似度矩阵,将相似度矩阵与引文矩阵相加得到一个混合信息矩阵;其次,通过矩阵乘法将内容相似信息与引用信息融入到论文-作者矩阵中;最后,利用LSMF模型分解论文-作者矩阵以得到推荐列表。在ACL文集网络(AAN)和DBLP数据集上的实验结果表明,所提方法取得了较好的推荐性能,且所提方法引入内容信息与引用信息的方式同样适用于其他矩阵分解模型。对于非负矩阵分解(NMF)、奇异值分解(SVD)、低秩稀疏矩阵补全(LSMC)和去分解(GoDec),利用混合信息后的模型比未利用混合信息的原模型在2个数据集上的前30个推荐结果的召回率(R@30)分别提升了18.72、7.43、11.53、14.62和20.58、2.11、7.91、5.01个百分点。
文摘该文提出一种部分基矩阵稀疏约束的非负矩阵分解(Non-negative Matrix Factorization with Sparseness Constraints on Parts of the Basis Matrix,NMFSCPBM)方法,其次将水印嵌入在NMFSCPBM分解后的基矩阵大系数中,利用NMFSCPBM提取视频运动特征自适应控制水印嵌入强度。最后,在水印检测时,只要残余视频中包含有视频最小剩余子块数,就可以恢复出完整基矩阵,进而提取出完整水印。实验表明,与同类方法相比,该方法抵抗强剪切攻击的能力获得了较大程度提升。