针对互耦效应和脉冲噪声并存环境下的波达方向(direction of arrival,DOA)估计问题,提出一种结合M估计与稀疏重构的算法。首先,为了消除互耦效应的影响,依据互耦矩阵的托普利兹结构进行恒等变形,得到了不含未知互耦系数的字典。随后,为...针对互耦效应和脉冲噪声并存环境下的波达方向(direction of arrival,DOA)估计问题,提出一种结合M估计与稀疏重构的算法。首先,为了消除互耦效应的影响,依据互耦矩阵的托普利兹结构进行恒等变形,得到了不含未知互耦系数的字典。随后,为了使算法能适应高斯噪声和不同强度的脉冲噪声,将位置得分函数表示为高斯位置得分函数和一系列非线性函数的线性组合,利用噪声样本估计线性组合系数从而建立损失函数。最后,采用迭代硬阈值算法进行稀疏重构,并通过改进信号更新策略提高正确收敛的概率。仿真结果表明,所提算法能有效抑制互耦效应和脉冲(高斯)噪声的干扰,同时相较已有算法在低信噪比、强脉冲特性下的性能有显著提升。展开更多
针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条...针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。展开更多
在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法...在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法相结合,提出一种改进的基于深度学习的波束空间信道估计算法。从重建过程入手,通过交替建立梯度下降模块(GDM)和近端映射模块(PMM)来构建网络。首先根据SalehValenzuela信道模型进行理论公式推导并生成信道数据;其次构建一个由传统迭代收缩阈值算法(ISTA)的更新步骤所展开的多层网络,并将数据传输到该网络,每层对应于一次类似ISTA的迭代;最后对训练好的模型进行在线测试,恢复出待估计的信道。构建Py Torch环境,将该算法与正交匹配追踪(OMP)算法、近似消息传递(AMP)算法、可学习的近似消息传递(LAMP)算法、高斯混合LAMP(GM-LAMP)算法进行对比,结果表明:在估计精度方面,所提算法相对表现较好的深度学习算法LAMP、GM-LAMP分别提升约3.07和2.61 d B,较传统算法OMP、AMP分别提升约11.12和9.57 d B;在参数量方面,所提算法较LAMP、GM-LAMP分别减少约39%和69%。展开更多
利用目标辐射源空间分布的稀疏性,提出了一种基于稀疏表示的多快拍联合波达方向(direction of arrival,DOA)估计方法。该方法首先利用采样数据矩阵大奇异值对应的左奇异向量估计信号子空间,然后采用加权迭代最小方差方法对信号空间进行...利用目标辐射源空间分布的稀疏性,提出了一种基于稀疏表示的多快拍联合波达方向(direction of arrival,DOA)估计方法。该方法首先利用采样数据矩阵大奇异值对应的左奇异向量估计信号子空间,然后采用加权迭代最小方差方法对信号空间进行稀疏表示。与传统的角度高分辨估计方法不同,该方法没有利用样本的统计信息,因而对具有任意相关性的信号源能进行有效的波达方向估计,不需要进行去相关处理,且具有很高的分辨力及估计精度。实验表明在该方法能准确的对目标源方位进行估计,且极大地降低了稀疏表示的计算量。展开更多
为提高水声通信系统的数据传输速率和可靠性,提出一种新的基于软信道估计的联合迭代均衡译码(joint iterative equalization and decoding,JIED)水声通信方法。该方法利用软输入软输出(soft in soft out,SISO)译码器反馈的外似然比计算...为提高水声通信系统的数据传输速率和可靠性,提出一种新的基于软信道估计的联合迭代均衡译码(joint iterative equalization and decoding,JIED)水声通信方法。该方法利用软输入软输出(soft in soft out,SISO)译码器反馈的外似然比计算符号软估计信息,并应用于稀疏自适应信道估计器的抽头系数更新过程。经过译码器和均衡器之间多次迭代交换软信息联合处理接收信号,信道估计精度与均衡效果显著提高。水声通信实验结果表明在通信距离1.8km、2kHz有效带宽内,新方法在第2次迭代后即可实现2kb/s的无误码传输,可以有效提高系统可靠性和传输速率。展开更多
文摘针对互耦效应和脉冲噪声并存环境下的波达方向(direction of arrival,DOA)估计问题,提出一种结合M估计与稀疏重构的算法。首先,为了消除互耦效应的影响,依据互耦矩阵的托普利兹结构进行恒等变形,得到了不含未知互耦系数的字典。随后,为了使算法能适应高斯噪声和不同强度的脉冲噪声,将位置得分函数表示为高斯位置得分函数和一系列非线性函数的线性组合,利用噪声样本估计线性组合系数从而建立损失函数。最后,采用迭代硬阈值算法进行稀疏重构,并通过改进信号更新策略提高正确收敛的概率。仿真结果表明,所提算法能有效抑制互耦效应和脉冲(高斯)噪声的干扰,同时相较已有算法在低信噪比、强脉冲特性下的性能有显著提升。
文摘针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。
文摘在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法相结合,提出一种改进的基于深度学习的波束空间信道估计算法。从重建过程入手,通过交替建立梯度下降模块(GDM)和近端映射模块(PMM)来构建网络。首先根据SalehValenzuela信道模型进行理论公式推导并生成信道数据;其次构建一个由传统迭代收缩阈值算法(ISTA)的更新步骤所展开的多层网络,并将数据传输到该网络,每层对应于一次类似ISTA的迭代;最后对训练好的模型进行在线测试,恢复出待估计的信道。构建Py Torch环境,将该算法与正交匹配追踪(OMP)算法、近似消息传递(AMP)算法、可学习的近似消息传递(LAMP)算法、高斯混合LAMP(GM-LAMP)算法进行对比,结果表明:在估计精度方面,所提算法相对表现较好的深度学习算法LAMP、GM-LAMP分别提升约3.07和2.61 d B,较传统算法OMP、AMP分别提升约11.12和9.57 d B;在参数量方面,所提算法较LAMP、GM-LAMP分别减少约39%和69%。
文摘利用目标辐射源空间分布的稀疏性,提出了一种基于稀疏表示的多快拍联合波达方向(direction of arrival,DOA)估计方法。该方法首先利用采样数据矩阵大奇异值对应的左奇异向量估计信号子空间,然后采用加权迭代最小方差方法对信号空间进行稀疏表示。与传统的角度高分辨估计方法不同,该方法没有利用样本的统计信息,因而对具有任意相关性的信号源能进行有效的波达方向估计,不需要进行去相关处理,且具有很高的分辨力及估计精度。实验表明在该方法能准确的对目标源方位进行估计,且极大地降低了稀疏表示的计算量。
文摘为提高水声通信系统的数据传输速率和可靠性,提出一种新的基于软信道估计的联合迭代均衡译码(joint iterative equalization and decoding,JIED)水声通信方法。该方法利用软输入软输出(soft in soft out,SISO)译码器反馈的外似然比计算符号软估计信息,并应用于稀疏自适应信道估计器的抽头系数更新过程。经过译码器和均衡器之间多次迭代交换软信息联合处理接收信号,信道估计精度与均衡效果显著提高。水声通信实验结果表明在通信距离1.8km、2kHz有效带宽内,新方法在第2次迭代后即可实现2kb/s的无误码传输,可以有效提高系统可靠性和传输速率。