期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
图像与稀疏激光点融合的单目深度估计 被引量:1
1
作者 蔡文靖 刘鑫 +1 位作者 王礼贺 纪宇航 《激光与红外》 CAS CSCD 北大核心 2024年第9期1373-1379,共7页
近年来,随着深度学习的快速发展,涌现出大量单目深度估计算法。但由于缺乏视差等几何约束,限制了算法深度预测精度的进一步提升,无法满足实际应用的需求。因此本文提出了一个二维图像与稀疏激光点融合的深度估计网络,通过实时输入少量... 近年来,随着深度学习的快速发展,涌现出大量单目深度估计算法。但由于缺乏视差等几何约束,限制了算法深度预测精度的进一步提升,无法满足实际应用的需求。因此本文提出了一个二维图像与稀疏激光点融合的深度估计网络,通过实时输入少量激光点的高精度测距结果,提高深度预测精度;其次,为解决自采集数据激光雷达点分布不均匀问题,在有监督网络基础上,加入相对位姿估计网络与深度估计网络联合训练,同时增加光度一致性、深度重投影两个损失函数;最终,利用自采集数据进行实验分析,实验结果表明,当使用160个激光点时,即可将深度预测绝对相对误差由10.1%降至7.6%,当使用1280个激光点时,深度预测绝对相对误差变化趋于平稳,降至4.1%。 展开更多
关键词 单目深度估计 稀疏激光点 残差神经网络
在线阅读 下载PDF
堆叠稀疏自编码深度神经网络算法及其在滚动轴承故障诊断中的应用 被引量:5
2
作者 刘自然 李谦 +1 位作者 颜丙生 尚坤 《机床与液压》 北大核心 2020年第23期208-213,共6页
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特... 针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率。 展开更多
关键词 堆叠稀疏自编码 深度神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于多层次视觉语义特征融合的图像检索算法 被引量:4
3
作者 张霞 郑逢斌 《包装工程》 CAS 北大核心 2018年第19期223-232,共10页
目的为了解决低层特征与中层语义属性间出现的语义鸿沟,以及在将低层特征转化为语义属性的过程中易丢失信息,从而会降低检索精度等问题,设计一种多层次视觉语义特征融合的图像检索算法。方法首先分别提取图像的3种中层特征(深度卷积神... 目的为了解决低层特征与中层语义属性间出现的语义鸿沟,以及在将低层特征转化为语义属性的过程中易丢失信息,从而会降低检索精度等问题,设计一种多层次视觉语义特征融合的图像检索算法。方法首先分别提取图像的3种中层特征(深度卷积神经网络(DCNN)特征、Fisher向量、稀疏编码空间金字塔匹配特征(SCSPM));其次,为了对3种特征进行有效融合,定义一种基于图的半监督学习模型,将提取的3个中层特征进行融合,形成一个多层次视觉语义特征,有效结合3种不同中层特征的互补信息,提高图像特征描述,从而降低检索算法中的语义鸿沟;最后,引入具有视觉特性与语义统一的距离函数,根据提取的多层次视觉语义特征来计算查询图像和训练图像的相似度量,完成图像检索任务。结果实验结果表明,与当前检索方法对比,文中算法具有更高的检索精度与效率。结论所提算法具有良好的检索准确度,在医疗、包装商标等领域具有一定的参考价值。 展开更多
关键词 图像检索 深度卷积神经网络 Fisher向量 稀疏编码空间金字塔匹配 多层次视觉语义特征 半监督学习
在线阅读 下载PDF
基于深度展开模型的毫米波稀疏成像算法
4
作者 车俐 吴永满 +1 位作者 蒋留兵 牟玉洁 《计算机应用研究》 CSCD 北大核心 2023年第11期3496-3502,共7页
针对传统压缩感知算法的高计算成本问题,从稀疏信号的恢复角度出发,提出一种基于深度展开模型的稀疏成像算法。首先构建复数稀疏重建网络VAMP-Net,在该网络中,复数形式的降采样回波信号被拆分成实部和虚部作为输入,接着代入到基于VAMP... 针对传统压缩感知算法的高计算成本问题,从稀疏信号的恢复角度出发,提出一种基于深度展开模型的稀疏成像算法。首先构建复数稀疏重建网络VAMP-Net,在该网络中,复数形式的降采样回波信号被拆分成实部和虚部作为输入,接着代入到基于VAMP算法的迭代块中,最后通过卷积神经模块进行最优非线性稀疏变换,得到恢复的实部和虚部信号,两者进行合并后得到恢复的目标图像。对于所提算法,采用人工合成的数据集在不同目标密集程度、迭代次数和噪声环境下进行仿真实验,并与传统的迭代收缩阈值算法和深度学习重构算法进行比较。再使用不同程度稀疏性的数据进行实测验证。实验结果表明,该算法重构的图像在NMSE、TBR、重构耗时以及内存使用上有更好的表现。 展开更多
关键词 毫米波雷达 稀疏成像 压缩感知 深度展开模型 卷积神经网络
在线阅读 下载PDF
基于自适应空间稀疏化的高效多视图立体匹配 被引量:6
5
作者 周晓清 王翔 +1 位作者 郑锦 百晓 《电子学报》 EI CAS CSCD 北大核心 2023年第11期3079-3091,共13页
针对多视图立体匹配中构建和聚合匹配代价体时计算复杂度高的问题,现有研究通常采用级联架构或迭代优化方法.然而这些方法仍面临两个亟待解决的挑战:级联架构在精细阶段缩小了深度采样范围,导致深度不连续区域可能陷入低分辨率的错误估... 针对多视图立体匹配中构建和聚合匹配代价体时计算复杂度高的问题,现有研究通常采用级联架构或迭代优化方法.然而这些方法仍面临两个亟待解决的挑战:级联架构在精细阶段缩小了深度采样范围,导致深度不连续区域可能陷入低分辨率的错误估计;而迭代优化网络的推理时间随迭代次数线性增长,难以满足实时系统需求.为此,本文提出一种基于自适应空间稀疏化的高效多视图立体匹配网络.我们提出一种稀疏匹配代价体构建方法,通过在完整深度范围内稀疏采样,在降低计算复杂度的同时保持了网络对深度不连续区域的建模能力.同时,我们提出一种稀疏迭代优化方法,在迭代中通过自适应变分Dropout逐步剪枝深度值已收敛的区域,使推理时间随迭代次数亚线性增长.在DTU和Tanks&Temples公共数据集上的实验结果表明,本文方法的推理速度相比CasMVSNet和PatchmatchNet分别快1.2倍和0.35倍,同时点云重建效果优异,边缘伪影显著减少,且泛化能力表现出色. 展开更多
关键词 多视图立体 三维重建 深度估计 稀疏神经网络 循环神经网络 TRANSFORMER
在线阅读 下载PDF
基于稀疏深度神经网络的电磁信号调制识别 被引量:6
6
作者 杨小蒙 张涛 +1 位作者 庄建军 唐震 《电讯技术》 北大核心 2023年第2期151-157,共7页
为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达... 为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达;然后,基于星座图中各信号点密度大小对星座图进行上色,增强星座图中信号特征;最后,通过SDNN对增强后的星座图进行识别分类。实验结果表明,SDNN模型选取合适的剪枝率后,能够有效降低模型存储规模和计算量,其中模型参数压缩了72%,浮点运算量压缩了45%,与原模型97%的综合识别率相比,稀疏化处理后模型的综合识别率为96.8%,在小幅度识别精度损失范围内大幅降低了模型复杂度。 展开更多
关键词 电磁信号 调制识别 星座图 稀疏深度神经网络(sdnn)
在线阅读 下载PDF
基于指标关联的舰载机出动架次率预测方法 被引量:1
7
作者 邓嘉宁 李海旭 +3 位作者 安强林 沙恩来 王泽 吴宇 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3515-3523,共9页
舰载机出动架次率作为衡量航母战斗力的关键指标,对航母舰载机系统的安全高效运行十分重要。建立根据实时数据预测当前出动架次率的模型,将会为航母指挥官的实时调度提供重要参考。首先,从指标原始数据出发,基于大数据关联度分析、社区... 舰载机出动架次率作为衡量航母战斗力的关键指标,对航母舰载机系统的安全高效运行十分重要。建立根据实时数据预测当前出动架次率的模型,将会为航母指挥官的实时调度提供重要参考。首先,从指标原始数据出发,基于大数据关联度分析、社区发现及主成分分析法,确定指标之间的树状关系,从而建立稀疏深度神经网络。同时,为了保证更好的训练效果,选取标准化、L2正则化、Adam优化器作为神经网络的优化算法进行训练。仿真结果表明,在航母舰载机持续性出动任务下,所提方法能够实现对舰载机出动架次率的快速、准确、实时预测。 展开更多
关键词 舰载机出动架次率 稀疏深度神经网络 Adam优化器 数据标准化 正则化
在线阅读 下载PDF
基于全卷积编解码网络的单目图像深度估计 被引量:6
8
作者 夏梦琪 郝琨 赵璐 《计算机工程与应用》 CSCD 北大核心 2021年第14期231-236,共6页
针对传统方法在单目图像深度估计时精度低、速度慢等问题,提出一种全卷积编码-解码网络模型,该模型将稀疏的深度样本集和RGB图像作为输入,编码层由Resnet和一个卷积层组成,解码层由两个上采样层和一个双线性上采样层组成,上采样层采用... 针对传统方法在单目图像深度估计时精度低、速度慢等问题,提出一种全卷积编码-解码网络模型,该模型将稀疏的深度样本集和RGB图像作为输入,编码层由Resnet和一个卷积层组成,解码层由两个上采样层和一个双线性上采样层组成,上采样层采用上卷积模块和上投影模块交叉使用,有效降低了棋盘效应并保留了预测深度图像的边缘信息。同时,模型中使用了全卷积,使得参数减少,提升了预测速度。在NYU-Depth-v2数据集上验证了网络模型的有效性与优越性。实验结果表明,在仅使用RGB图像进行深度预测的情况下,与多尺度卷积神经网络相比,该模型在精度δ<1.25上提高约4%,均方根误差指标降低约11%;与仅使用RGB图像相比,添加100个空间随机深度样本,均方根误差降低约26%。 展开更多
关键词 单目图像深度估计 卷积神经网络 深度残差网络 稀疏深度测量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部