期刊文献+
共找到724篇文章
< 1 2 37 >
每页显示 20 50 100
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network 被引量:2
1
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(cnn) cloud RAN deep Q-network(DQN)
在线阅读 下载PDF
基于CNN模型的地震数据噪声压制性能对比研究
2
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(cnn) 时频变换 TRANSFORMER
在线阅读 下载PDF
基于VMD-1DCNN-GRU的轴承故障诊断
3
作者 宋金波 刘锦玲 +2 位作者 闫荣喜 王鹏 路敬祎 《吉林大学学报(信息科学版)》 2025年第1期34-42,共9页
针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausd... 针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausdorff Distance)完成去噪,尽可能保留原始信号的特征。其次,将选择的有效信号输入一维卷积神经网络(1DCNN:1D Convolutional Neural Networks)和门控循环单元(GRU:Gate Recurrent Unit)相结合的网络结构(1DCNN-GRU)中完成数据的分类,实现轴承的故障诊断。通过与常见的轴承故障诊断方法比较,所提VMD-1DCNN-GRU模型具有最高的准确性。实验结果验证了该模型对轴承故障有效分类的可行性,具有一定的研究意义。 展开更多
关键词 故障诊断 深度学习 变分模态分解 一维卷积神经网络 门控循环单元
在线阅读 下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别 被引量:1
4
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:1
5
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(cnn) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
An Improved Convolutional Neural Network Based Indoor Localization by Using Jenks Natural Breaks Algorithm 被引量:3
6
作者 Chengjie Hou Yaqin Xie Zhizhong Zhang 《China Communications》 SCIE CSCD 2022年第4期291-301,共11页
With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints... With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints algorithm based on convolution neural network(CNN) is often used to improve indoor localization accuracy. However, the number of reference points used for position estimation has significant effects on the positioning accuracy. Meanwhile, it is always selected arbitraily without any guiding standards. As a result, a novel location estimation method based on Jenks natural breaks algorithm(JNBA), which can adaptively choose more reasonable reference points, is proposed in this paper. The output of CNN is processed by JNBA, which can select the number of reference points according to different environments. Then, the location is estimated by weighted K-nearest neighbors(WKNN). Experimental results show that the proposed method has higher positioning accuracy without sacrificing more time cost than the existing indoor localization methods based on CNN. 展开更多
关键词 indoor localization convolution neural network(cnn) Wi-Fi fingerprints Jenks natural breaks
在线阅读 下载PDF
Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks 被引量:1
7
作者 Chengxu LU Bo WANG +3 位作者 Xunpeng JIANG Junning ZHANG Kang NIU Yanwei YUAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期108-113,共6页
One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy(LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,this paper investigated ... One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy(LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,this paper investigated a combination of time-resolved LIBS and convolutional neural networks(CNNs) to improve K determination in soil. The time-resolved LIBS contained the information of both wavelength and time dimension. The spectra of wavelength dimension showed the characteristic emission lines of elements, and those of time dimension presented the plasma decay trend. The one-dimensional data of LIBS intensity from the emission line at 766.49 nm were extracted and correlated with the K concentration, showing a poor correlation of R_c^2?=?0.0967, which is caused by the matrix effect of heterogeneous soil. For the wavelength dimension, the two-dimensional data of traditional integrated LIBS were extracted and analyzed by an artificial neural network(ANN), showing R_v^2?=?0.6318 and the root mean square error of validation(RMSEV)?=?0.6234. For the time dimension, the two-dimensional data of time-decay LIBS were extracted and analyzed by ANN, showing R_v^2?=?0.7366 and RMSEV?=?0.7855.These higher determination coefficients reveal that both the non-K emission lines of wavelength dimension and the spectral decay of time dimension could assist in quantitative detection of K.However, due to limited calibration samples, the two-dimensional models presented over-fitting.The three-dimensional data of time-resolved LIBS were analyzed by CNNs, which extracted and integrated the information of both the wavelength and time dimension, showing the R_v^2?=?0.9968 and RMSEV?=?0.0785. CNN analysis of time-resolved LIBS is capable of improving the determination of K in soil. 展开更多
关键词 quantitative DETECTION potassium(K) SOIL TIME-RESOLVED LASER-INDUCED breakdown spectroscopy(LIBS) convolutional neural networks(cnns)
在线阅读 下载PDF
Determination of quantum toric error correction code threshold using convolutional neural network decoders 被引量:1
8
作者 Hao-Wen Wang Yun-Jia Xue +2 位作者 Yu-Lin Ma Nan Hua Hong-Yang Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期136-142,共7页
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err... Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise. 展开更多
关键词 quantum error correction toric code convolutional neural network(cnn)decoder
在线阅读 下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network 被引量:1
9
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(cnn)
在线阅读 下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
10
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) convolutional neural network(cnn)
在线阅读 下载PDF
融合特征下的双流CNN的制动蠕动颤振评价
11
作者 李阳 靳畅 +1 位作者 李天舒 顾鼎元 《振动与冲击》 北大核心 2025年第1期134-142,189,共10页
针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方... 针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方法。一条支路的输入为经过变分模态分解提取的时间序列特征,另一条支路的输入为经过快速傅里叶变换提取的图像特征,将一维时序特征与高维图像特征融合,训练模型进行评分。该方法通过融合不同模态的信息,充分捕捉蠕动颤振的局部波形特征和空间纹理特征。结果表明,融合两种特征的评分模型的八分类准确率达87.13%,验证了特征融合方法在蠕动颤振评价上的有效性。 展开更多
关键词 卷积神经网络(cnn) 融合特征 变分模态分解(VMD) 蠕动颤振
在线阅读 下载PDF
基于多尺度CNN与双阶段注意力机制的轴承工况域泛化故障诊断
12
作者 乔卉卉 赵二贤 +3 位作者 郝如江 刘婕 刘帅 王勇超 《振动与冲击》 北大核心 2025年第2期267-278,共12页
变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参... 变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参与训练,这在工程实际中难以实现,因此无法实现未知工况的轴承故障诊断。针对以上问题,提出了一种基于多尺度卷积神经网络与双阶段注意力机制网络(two-stage attention multiscale convolutional network model, TSAMCNN)模型的轴承工况域泛化故障诊断方法,其中多尺度特征提取模块从多个尺度上提取时域振动信号中更丰富的故障信息;然后,双阶段注意力模块从通道和空间两个维度自适应地增强故障敏感特征并抑制工况敏感特征和无用特征;最终,提取工况域不变故障特征,从而实现工况域泛化轴承故障诊断。通过变转速和变负载列车轮对轴承故障诊断试验,证明了TSAMCNN模型可提高变工况条件下轴承故障诊断的准确率、抗噪性能和工况域泛化能力。此外,对双阶段注意力机制的权重向量和模型各模块提取的特征进行可视化分析,提高了模型可解释性。 展开更多
关键词 列车轮对轴承 工况域泛化故障诊断 卷积神经网络(cnn) 多尺度特征提取 注意力机制
在线阅读 下载PDF
Reconstruction of pile-up events using a one-dimensional convolutional autoencoder for the NEDA detector array
13
作者 J.M.Deltoro G.Jaworski +15 位作者 A.Goasduff V.González A.Gadea M.Palacz J.J.Valiente-Dobón J.Nyberg S.Casans A.E.Navarro-Antón E.Sanchis G.de Angelis A.Boujrad S.Coudert T.Dupasquier S.Ertürk O.Stezowski R.Wadsworth 《Nuclear Science and Techniques》 2025年第2期62-70,共9页
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ... Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals. 展开更多
关键词 1D-CAE Autoencoder CAE convolutional neural network(cnn) Neutron detector Neutron-gamma discrimination(NGD) Machine learning Pulse shape discrimination Pile-up pulse
在线阅读 下载PDF
基于GAF-CNN的船用空压机故障噪声诊断方法
14
作者 董明 崔德馨 李祥林 《船舶》 2025年第1期106-114,共9页
船用空压机工作环境恶劣,内外激励源众多,采集的噪声信号具有强烈的时变性,会导致故障诊断精度较低,难以实现船用空压机各类故障的有效识别。为此,该文提出将格拉姆角场(Gramian angular field,GAF)编码和卷积神经网络(convolutional ne... 船用空压机工作环境恶劣,内外激励源众多,采集的噪声信号具有强烈的时变性,会导致故障诊断精度较低,难以实现船用空压机各类故障的有效识别。为此,该文提出将格拉姆角场(Gramian angular field,GAF)编码和卷积神经网络(convolutional neural network,CNN)法相结合的故障诊断方法。首先,阐述了GAF和CNN的基本原理、方法和实施步骤;然后,通过试验模拟了船用空压机的各类故障,并采集相应噪声信号,再利用GAF将一维时域信号转换为二维图像,将特征信息映射为二维图像的颜色、点等纹理特征;最后,将二维图像输入至CNN中进行特征提取和故障诊断。试验结果表明:在保证运行效率的前提下,该方法能够有效识别船用空压机的各类故障,诊断精度达到99.2%,优于其他算法,可为船舶故障智能诊断的应用提供了新途径和新思路。 展开更多
关键词 船用空压机 噪声分析 格拉姆角场 卷积神经网络 故障诊断
在线阅读 下载PDF
基于小波变换和CNN-BiLSTM的电力电缆故障定位
15
作者 任晶晶 王耀辉 《通信电源技术》 2025年第7期240-242,共3页
文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升... 文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升故障定位的精准性。为验证提出算法的有效性,将True、BiLSTM、极值域均值模式分解(Extremum field Mean Mode Decomposition,EMMD)+小波变换算法与本文算法进行对比实验分析。实验结果表明,基于小波变换和CNN-BiLSTM的电力电缆故障定位算法能够将定位误差控制在0.02 km以内,显著提高了故障定位的精度。 展开更多
关键词 小波变换 卷积神经网络(cnn) 双向长短期记忆(BiLSTM) 电力电缆故障定位
在线阅读 下载PDF
基于CNN-LSTM的大坝变形组合预测模型研究 被引量:5
16
作者 王润英 林思雨 +1 位作者 方卫华 赵凯文 《水力发电》 CAS 2024年第1期37-41,52,共6页
为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间... 为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间序列的特征,再利用LSTM生成特征描述,该模型精度高、泛化能力强。以柏叶口水库混凝土面板堆石坝为例,经过CNN-LSTM模型计算,将模型变形预测值与原型监测资料进行对比,再与LSTM模型及CNN模型的预测结果进行对比。结果表明,CNN-LSTM模型预测值最接近监测资料实测结果。 展开更多
关键词 大坝变形 卷积神经网络 LSTM神经网络 变形预测 预测精度 柏叶口水库
在线阅读 下载PDF
面向边缘计算的可重构CNN协处理器研究与设计 被引量:1
17
作者 李伟 陈億 +2 位作者 陈韬 南龙梅 杜怡然 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第4期1499-1512,共14页
随着深度学习技术的发展,卷积神经网络模型的参数量和计算量急剧增加,极大提高了卷积神经网络算法在边缘侧设备的部署成本。因此,为了降低卷积神经网络算法在边缘侧设备上的部署难度,减小推理时延和能耗开销,该文提出一种面向边缘计算... 随着深度学习技术的发展,卷积神经网络模型的参数量和计算量急剧增加,极大提高了卷积神经网络算法在边缘侧设备的部署成本。因此,为了降低卷积神经网络算法在边缘侧设备上的部署难度,减小推理时延和能耗开销,该文提出一种面向边缘计算的可重构CNN协处理器结构。基于按通道处理的数据流模式,提出的两级分布式存储方案解决了片上大规模的数据搬移和重构运算时PE单元间的大量数据移动导致的功耗开销和性能下降的问题;为了避免加速阵列中复杂的数据互联网络传播机制,降低控制的复杂度,该文提出一种灵活的本地访存机制和基于地址转换的填充机制,使得协处理器能够灵活实现任意规格的常规卷积、深度可分离卷积、池化和全连接运算,提升了硬件架构的灵活性。本文提出的协处理器包含256个PE运算单元和176 kB的片上私有存储器,在55 nm TT Corner(25°C,1.2 V)的CMOS工艺下进行逻辑综合和布局布线,最高时钟频率能够达到328 MHz,实现面积为4.41 mm^(2)。在320 MHz的工作频率下,该协处理器峰值运算性能为163.8 GOPs,面积效率为37.14GOPs/mm^(2),完成LeNet-5和MobileNet网络的能效分别为210.7 GOPs/W和340.08 GOPs/W,能够满足边缘智能计算场景下的能效和性能需求。 展开更多
关键词 硬件加速 卷积神经网络 可重构 ASIC
在线阅读 下载PDF
基于AM和CNN的多级特征融合的风力发电机轴承故障诊断方法 被引量:3
18
作者 王进花 韩金玉 +1 位作者 曹洁 王亚丽 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期51-61,共11页
提出一种基于注意力机制的多级特征融合卷积神经网络(A2ML2F-CNN)故障诊断方法。该方法将原始电流和振动信号作为输入,首先使用基于注意力卷积神经网络(AMCNN)模块分别进行数据信号特征提取,并进行一级特征融合连接。在此基础上,再次分... 提出一种基于注意力机制的多级特征融合卷积神经网络(A2ML2F-CNN)故障诊断方法。该方法将原始电流和振动信号作为输入,首先使用基于注意力卷积神经网络(AMCNN)模块分别进行数据信号特征提取,并进行一级特征融合连接。在此基础上,再次分别采用注意力机制一维卷积神经网(AM1DCNN)和二维卷积神经网络(2DCNN)提取相关信息,并进行二级特征融合,以此来解决单传感器数据故障信息不足及互补特征难以提取的问题,最后采用全连接层和Softmax层进行分类,得到诊断结果。为验证所提方法的故障诊断效果,通过帕德伯恩数据集进行实验验证,并将其与CNN、LSTM、SVM等方法的诊断精度进行对比,相较于上述方法,该文方法的诊断准确率分别提高1.8、3.2和4.8个百分点,验证了所提方法的有效性。 展开更多
关键词 风力机 故障诊断 特征融合 注意力机制 卷积神经网络 风力发电机轴承
在线阅读 下载PDF
基于Transformer和CNN交错混合的肺结节分割网络 被引量:1
19
作者 吴骏 侯宪哲 +2 位作者 王健 肖志涛 王雯 《天津工业大学学报》 CAS 北大核心 2024年第1期74-81,共8页
针对肺结节尺寸多样、形状异质化高等问题,提出基于Transformer和卷积神经网络(CNN)交错混合(IMTC)的肺结节分割网络,该网络是一个对称的层次连接网络,具有很强的多尺度特征提取能力。该网络通过集成2种方案分别解决肺结节多尺寸与形状... 针对肺结节尺寸多样、形状异质化高等问题,提出基于Transformer和卷积神经网络(CNN)交错混合(IMTC)的肺结节分割网络,该网络是一个对称的层次连接网络,具有很强的多尺度特征提取能力。该网络通过集成2种方案分别解决肺结节多尺寸与形状异质化问题:(1)采用感知注意力模块(inception attention module,IAM),通过并联多个不同大小的卷积核来增加浅层网络的感受野组合,以此捕获更为丰富的浅层特征;(2)为获取更具表示能力的高级语义特征,利用由Transformer和CNN组成的基本骨干网络交错提取结节特征,使得全局特征与局部特征充分融合,从而提高结节特征表示的泛化能力和鲁棒性。实验结果表明:本文模型可以准确分割直径较小以及边缘复杂的肺结节,在LUNA16公开数据集上分割性能良好,Dice和IOU分别达到86.15%和76.10%。 展开更多
关键词 肺结节 TRANSFORMER 卷积神经网络(cnn) 感知注意力模块(IAM) 交错混合
在线阅读 下载PDF
基于改进CNN-SVM的井下钻头磨损状态评估研究 被引量:2
20
作者 李玉梅 邓杨林 +3 位作者 李基伟 李乾 杨磊 于丽维 《石油机械》 北大核心 2024年第6期12-19,共8页
现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采... 现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采集的近钻头原始振动数据导入CNN-Softmax模型,通过训练好的CNN模型从近钻头数据中提取主要的特征参数,将提取的稀疏特征向量输入SVM并进行故障分类,利用遗传算法实现SVM参数的优化选择,最后应用t分布随机邻域法近邻嵌入,使其故障特征学习过程可视化,以评估其特征提取能力。采用该算法对钻头磨损的现场试验数据进行了分析。分析结果表明:基于改进CNN-SVM的井下钻头磨损状态评估算法准确率高达98.33%。所得结论可为实现钻头磨损状态的进一步监测提供理论支撑。 展开更多
关键词 钻头磨损状态评估 卷积神经网络 支持向量机 特征提取可视化 平均池化采样
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部