Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is ba...Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.展开更多
A new method for interaction recognition based on sparse representation of feature covariance matrices was presented.Firstly,the dense trajectories(DT)extracted from the video were clustered into different groups to e...A new method for interaction recognition based on sparse representation of feature covariance matrices was presented.Firstly,the dense trajectories(DT)extracted from the video were clustered into different groups to eliminate the irrelevant trajectories,which could greatly reduce the noise influence on feature extraction.Then,the trajectory tunnels were characterized by means of feature covariance matrices.In this way,the discriminative descriptors could be extracted,which was also an effective solution to the problem that the description of the feature second-order statistics is insufficient.After that,an over-complete dictionary was learned with the descriptors and all the descriptors were encoded using sparse coding(SC).Classification was achieved using multiple instance learning(MIL),which was more suitable for complex environments.The proposed method was tested and evaluated on the WEB Interaction dataset and the UT interaction dataset.The experimental results demonstrated the superior efficiency.展开更多
Moderate resolution imaging spectroradiometer(MODIS)imaging has various applications in the field of ground monitoring,cloud classification and meteorological research.However,the limitations of the sensors and extern...Moderate resolution imaging spectroradiometer(MODIS)imaging has various applications in the field of ground monitoring,cloud classification and meteorological research.However,the limitations of the sensors and external disturbance make the resolution of image still limited in a certain level.The goal of this paper is to use a single image super-resolution(SISR)method to predict a high-resolution(HR)MODIS image from a single low-resolution(LR)input.Recently,although the method based on sparse representation has tackled the ill-posed problem effectively,two fatal issues have been ignored.First,many methods ignore the relationships among patches,resulting in some unfaithful output.Second,the high computational complexity of sparse coding using l_1 norm is needed in reconstruction stage.In this work,we discover the semantic relationships among LR patches and the corresponding HR patches and group the documents with similar semantic into topics by probabilistic Latent Semantic Analysis(p LSA).Then,we can learn dual dictionaries for each topic in the low-resolution(LR)patch space and high-resolution(HR)patch space and also pre-compute corresponding regression matrices for dictionary pairs.Finally,for the test image,we infer locally which topic it corresponds to and adaptive to select the regression matrix to reconstruct HR image by semantic relationships.Our method discovered the relationships among patches and pre-computed the regression matrices for topics.Therefore,our method can greatly reduce the artifacts and get some speed-up in the reconstruction phase.Experiment manifests that our method performs MODIS image super-resolution effectively,results in higher PSNR,reconstructs faster,and gets better visual quality than some current state-of-art methods.展开更多
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.
基金Project(51678075) supported by the National Natural Science Foundation of ChinaProject(2017GK2271) supported by the Science and Technology Project of Hunan Province,China
文摘A new method for interaction recognition based on sparse representation of feature covariance matrices was presented.Firstly,the dense trajectories(DT)extracted from the video were clustered into different groups to eliminate the irrelevant trajectories,which could greatly reduce the noise influence on feature extraction.Then,the trajectory tunnels were characterized by means of feature covariance matrices.In this way,the discriminative descriptors could be extracted,which was also an effective solution to the problem that the description of the feature second-order statistics is insufficient.After that,an over-complete dictionary was learned with the descriptors and all the descriptors were encoded using sparse coding(SC).Classification was achieved using multiple instance learning(MIL),which was more suitable for complex environments.The proposed method was tested and evaluated on the WEB Interaction dataset and the UT interaction dataset.The experimental results demonstrated the superior efficiency.
基金partially supported by the National Natural Science Foundation of China(61471212)Natural Science Foundation of Zhejiang Province(LY16F010001)Natural Science Foundation of Ningbo(2016A610091,2017A610297)
文摘Moderate resolution imaging spectroradiometer(MODIS)imaging has various applications in the field of ground monitoring,cloud classification and meteorological research.However,the limitations of the sensors and external disturbance make the resolution of image still limited in a certain level.The goal of this paper is to use a single image super-resolution(SISR)method to predict a high-resolution(HR)MODIS image from a single low-resolution(LR)input.Recently,although the method based on sparse representation has tackled the ill-posed problem effectively,two fatal issues have been ignored.First,many methods ignore the relationships among patches,resulting in some unfaithful output.Second,the high computational complexity of sparse coding using l_1 norm is needed in reconstruction stage.In this work,we discover the semantic relationships among LR patches and the corresponding HR patches and group the documents with similar semantic into topics by probabilistic Latent Semantic Analysis(p LSA).Then,we can learn dual dictionaries for each topic in the low-resolution(LR)patch space and high-resolution(HR)patch space and also pre-compute corresponding regression matrices for dictionary pairs.Finally,for the test image,we infer locally which topic it corresponds to and adaptive to select the regression matrix to reconstruct HR image by semantic relationships.Our method discovered the relationships among patches and pre-computed the regression matrices for topics.Therefore,our method can greatly reduce the artifacts and get some speed-up in the reconstruction phase.Experiment manifests that our method performs MODIS image super-resolution effectively,results in higher PSNR,reconstructs faster,and gets better visual quality than some current state-of-art methods.