Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser...Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.展开更多
Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to...Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload.Introducing SCMA into visible light communication(VLC)systems can improve the data transmission capability of the system.However,designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios.Therefore,this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate(BER)criterion.Firstly,this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced;then,the BER performance in the visible light communication system is optimized to obtain specific parameters;finally,the successive interference cancellation(SIC)detection algorithm is used at the receiver side.Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations.This can simultaneously reduce the complexity of design and detection,outperforming existing design methods for massive SCMA codebooks.展开更多
This paper proposes a class of novel progressive edge growth-based codebooks for downlink sparse code multiple access(SCMA)systems.In the first scheme,we propose to progressively design the codebooks of each resource ...This paper proposes a class of novel progressive edge growth-based codebooks for downlink sparse code multiple access(SCMA)systems.In the first scheme,we propose to progressively design the codebooks of each resource node(RN)instead of rotating a mother constellation(MC)as in the conventional SCMA works.In the other one,based on the MC,a multi-resources rotated codebooks are proposed to improve the performance of the superimposed constellations.The resultant codebooks are respectively referred to as the resource edge multidimensional codebooks(REMC)and the user edge multi-dimensional codebooks(UEMC).Additionally,we delve into the detailed design of the MC and the superimposed constellation.Then,we pay special attention to the application of the proposed schemes to challenging design cases,particularly for the high dimensional,high rate,and irregular codebooks,where the corresponding simplified schemes are proposed to reduce the complexity of codebook design.Finally,simulation results are presented to demonstrate the superiority of our progressive edge growth-based schemes.The numerical results indicate that the proposed codebooks significantly outperform the stateof-the-art codebooks.In addition,we also show that the proposed REMC codebooks outperform in the lower signal-to-noise ratio(SNR)regime,whereas the UEMC codebooks exhibit better performance at higher SNRs.展开更多
基金supported in part by National Natural Science Foundation of China (no. 61571373, no. 61501383, no. U1734209, no. U1709219)in part by Key International Cooperation Project of Sichuan Province (no. 2017HH0002)+2 种基金in part by Marie Curie Fellowship (no. 792406)in part by the National Science and Technology Major Project under Grant 2016ZX03001018-002in part by NSFC China-Swedish project (no. 6161101297)
文摘Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.
基金supported in part by the National Science Foundation of China(NSFC)under Grant 62161024Jiangxi Provincial Natural Science Foundation under Grant 20224BAB212002+3 种基金Jiangxi Provincial Talent Project for Academic and Technical Leaders of Major Disciplines under Grant 20232BCJ23085,China Postdoctoral Science Foundation under Grant 2021TQ0136 and 2022M711463the State Key Laboratory of Computer Architecture(ICT,CAS)Open Project under Grant CARCHB202019supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62061030supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62161023。
文摘Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload.Introducing SCMA into visible light communication(VLC)systems can improve the data transmission capability of the system.However,designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios.Therefore,this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate(BER)criterion.Firstly,this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced;then,the BER performance in the visible light communication system is optimized to obtain specific parameters;finally,the successive interference cancellation(SIC)detection algorithm is used at the receiver side.Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations.This can simultaneously reduce the complexity of design and detection,outperforming existing design methods for massive SCMA codebooks.
文摘This paper proposes a class of novel progressive edge growth-based codebooks for downlink sparse code multiple access(SCMA)systems.In the first scheme,we propose to progressively design the codebooks of each resource node(RN)instead of rotating a mother constellation(MC)as in the conventional SCMA works.In the other one,based on the MC,a multi-resources rotated codebooks are proposed to improve the performance of the superimposed constellations.The resultant codebooks are respectively referred to as the resource edge multidimensional codebooks(REMC)and the user edge multi-dimensional codebooks(UEMC).Additionally,we delve into the detailed design of the MC and the superimposed constellation.Then,we pay special attention to the application of the proposed schemes to challenging design cases,particularly for the high dimensional,high rate,and irregular codebooks,where the corresponding simplified schemes are proposed to reduce the complexity of codebook design.Finally,simulation results are presented to demonstrate the superiority of our progressive edge growth-based schemes.The numerical results indicate that the proposed codebooks significantly outperform the stateof-the-art codebooks.In addition,we also show that the proposed REMC codebooks outperform in the lower signal-to-noise ratio(SNR)regime,whereas the UEMC codebooks exhibit better performance at higher SNRs.