An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith...An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths.展开更多
Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.I...Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.展开更多
In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of t...In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.展开更多
The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms wit...The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm.展开更多
Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct ar...Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.展开更多
Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels...Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims to define a confidence boundary by using(healthy) measurements evaluated on the rail constituting a baseline. The second step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed procedure is based on a machine learning methodology and includes the following stages:(1) data collection,(2) damage-sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder(SAE),(3) data fusion based on the Mahalanobis distance, and(4) unsupervised feature classification by implementing outlier and cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. Then, the trained SAE is capable to reconstruct test responses(not trained) allowing to compute the accumulative difference between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two most common types of OOR in railway wheels.展开更多
This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an...This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.展开更多
We consider the task of binary classification in the high-dimensional setting where the number of features of the given data is larger than the number of observations.To accomplish this task,we propose an adherently p...We consider the task of binary classification in the high-dimensional setting where the number of features of the given data is larger than the number of observations.To accomplish this task,we propose an adherently penalized optimal scoring(APOS)model for simultaneously performing discriminant analysis and feature selection.In this paper,an efficient algorithm based on the block coordinate descent(BCD)method and the SSNAL algorithm is developed to solve the APOS approximately.The convergence results of our method are also established.Numerical experiments conducted on simulated and real datasets demonstrate that the proposed model is more efficient than several sparse discriminant analysis methods.展开更多
A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a spa...A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.展开更多
An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach....An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice.展开更多
Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next gene...Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next generation of mobile communication.However,the inter-Doppler interference(IDI)problem caused by fractional Doppler poses great challenges to channel estimation.To avoid this problem,this paper proposes a joint time and delayDoppler(DD)domain based on sparse Bayesian learning(SBL)channel estimation algorithm.Firstly,we derive the original channel response(OCR)from the time domain channel impulse response(CIR),which can reflect the channel variation during one OTFS symbol.Compare with the traditional channel model,the OCR can avoid the IDI problem.After that,the dimension of OCR is reduced by using the basis expansion model(BEM)and the relationship between the time and DD domain channel model,so that we have turned the underdetermined problem into an overdetermined problem.Finally,in terms of sparsity of channel in delay domain,SBL algorithm is used to estimate the basis coefficients in the BEM without any priori information of channel.The simulation results show the effectiveness and superiority of the proposed channel estimation algorithm.展开更多
The sparse unmixing problem of greedy algorithms still remains a great challenge at finding an optimal subset of endmembers for the observed data from the spectral library,due to the usually high correlation of the sp...The sparse unmixing problem of greedy algorithms still remains a great challenge at finding an optimal subset of endmembers for the observed data from the spectral library,due to the usually high correlation of the spectral library.Under such circumstances,a novel greedy algorithm for sparse unmixing of hyperspectral data is presented,termed the recursive dictionary-based simultaneous orthogonal matching pursuit(RD-SOMP).The algorithm adopts a block-processing strategy to divide the whole hyperspectral image into several blocks.At each iteration of the block,the spectral library is projected into the orthogonal subspace and renormalized,which can reduce the correlation of the spectral library.Then RD-SOMP selects a new endmember with the maximum correlation between the current residual and the orthogonal subspace of the spectral library.The endmembers picked in all the blocks are associated as the endmember sets of the whole hyperspectral data.Finally,the abundances are estimated using the whole hyperspectral data with the obtained endmember sets.It can be proved that RD-SOMP can recover the optimal endmembers from the spectral library under certain conditions.Experimental results demonstrate that the RD-SOMP algorithm outperforms the other algorithms,with a better spectral unmixing accuracy.展开更多
A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the enco...A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.展开更多
A superimposed training (ST) based channel estimation method is presented that provides accurate estimation of a sparse underwater acoustic orthogonal frequency-division multiplexing (OFDM) channel while improving...A superimposed training (ST) based channel estimation method is presented that provides accurate estimation of a sparse underwater acoustic orthogonal frequency-division multiplexing (OFDM) channel while improving bandwidth transmission efficiency. A periodic low power training sequence is superimposed on the information sequence at the transmitter. The channel parameters can be estimated without consuming any extra system bandwidth, but an unknown information sequence can interfere with the ST channel estimation method, so in this paper, an iterative method was adopted to improve estimation performance. An underwater acoustic channel's properties include large channel dimensions and a sparse structure, so a matching pursuit (MP) algorithm was used to estimate the nonzero taps, allowing the performance loss caused by additive white Gaussian noise (AWGN) to be reduced. The results of computer simulations show that the proposed method has good channel estimation performance and can reduce the peak-to-average ratio of the OFDM channel as well.展开更多
A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the co...A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality.展开更多
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ...For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.展开更多
recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarri...recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarriers in the frequency domain besides the conventional amplitude-phase modulation of the activated subcarriers. Orthogonal frequency division multiplexing(OFDM) with IM(OFDM-IM) is deeply compared with the classical OFDM. It leads to an attractive trade-off between the spectral efficiency(SE) and the energy efficiency(EE). In this paper, the concept of the combinatorial modulation is introduced from a new point of view. The sparsity mapping is suggested intentionally to enable the compressive sensing(CS) concept in the data recovery process to provide further performance and EE enhancement without SE loss. Generating artificial data sparsity in the frequency domain along with naturally embedded channel sparsity in the time domain allows joint data recovery and channel estimation in a double sparsity framework. Based on simulation results, the performance of the proposed approach agrees with the predicted CS superiority even under low signal-to-noise ratio without channel coding. Moreover, the proposed sparsely indexed modulation system outperforms the conventional OFDM system and the OFDM-IM system in terms of error performance, peak-to-average power ratio(PAPR) and energy efficiency under the same spectral efficiency.展开更多
基金Supported by the Tianjin University of Technology Graduate R esearch Innovation Project(YJ2281).
文摘An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths.
文摘Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.
基金supported by Natural Science Foundation of China(62071262)the K.C.Wong Magna Fund at Ningbo University.
文摘In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.
基金supported by National Key Research and Development Program of China(2020YFB0505803)National Key Research and Development Program of China(2016YFB0501700)。
文摘The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm.
基金supported by the National Natural Science Foundation of China under Grant No.U2341208.
文摘Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.
基金a result of project WAY4SafeRail—Wayside monitoring system FOR SAFE RAIL transportation, with reference NORTE-01-0247-FEDER-069595co-funded by the European Regional Development Fund (ERDF), through the North Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement+3 种基金financially supported by Base Funding-UIDB/04708/2020Programmatic Funding-UIDP/04708/2020 of the CONSTRUCT—Instituto de Estruturas e Constru??esfunded by national funds through the FCT/ MCTES (PIDDAC)Grant No. 2021.04272. CEECIND from the Stimulus of Scientific Employment, Individual Support (CEECIND) - 4th Edition provided by “FCT – Funda??o para a Ciência, DOI : https:// doi. org/ 10. 54499/ 2021. 04272. CEECI ND/ CP1679/ CT0003”。
文摘Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims to define a confidence boundary by using(healthy) measurements evaluated on the rail constituting a baseline. The second step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed procedure is based on a machine learning methodology and includes the following stages:(1) data collection,(2) damage-sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder(SAE),(3) data fusion based on the Mahalanobis distance, and(4) unsupervised feature classification by implementing outlier and cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. Then, the trained SAE is capable to reconstruct test responses(not trained) allowing to compute the accumulative difference between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two most common types of OOR in railway wheels.
基金supported by the Science and Technology Development Fund of Macao SAR(FDCT0128/2022/A,0020/2023/RIB1,0111/2023/AFJ,005/2022/ALC)the Shandong Natural Science Foundation of China(ZR2020MA004)+2 种基金the National Natural Science Foundation of China(12071272)the MYRG 2018-00168-FSTZhejiang Provincial Natural Science Foundation of China(LQ23A010014).
文摘This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.
基金supported by the National Natural Science Foundation of China(No.12271097)the Key Program of National Science Foundation of Fujian Province of China(No.2023J02007)+1 种基金the Central Guidance on Local Science and Technology Development Fund of Fujian Province(No.2023L3003)the Fujian Alliance of Mathematics(No.2023SXLMMS01)。
文摘We consider the task of binary classification in the high-dimensional setting where the number of features of the given data is larger than the number of observations.To accomplish this task,we propose an adherently penalized optimal scoring(APOS)model for simultaneously performing discriminant analysis and feature selection.In this paper,an efficient algorithm based on the block coordinate descent(BCD)method and the SSNAL algorithm is developed to solve the APOS approximately.The convergence results of our method are also established.Numerical experiments conducted on simulated and real datasets demonstrate that the proposed model is more efficient than several sparse discriminant analysis methods.
基金Supported by the National Natural Science Foundation of China (61072098 61072099+1 种基金 60736006)PCSIRT-IRT1005
文摘A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.
文摘An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice.
基金supported by the Natural Science Foundation of Chongqing(No.cstc2019jcyj-msxmX0017)。
文摘Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next generation of mobile communication.However,the inter-Doppler interference(IDI)problem caused by fractional Doppler poses great challenges to channel estimation.To avoid this problem,this paper proposes a joint time and delayDoppler(DD)domain based on sparse Bayesian learning(SBL)channel estimation algorithm.Firstly,we derive the original channel response(OCR)from the time domain channel impulse response(CIR),which can reflect the channel variation during one OTFS symbol.Compare with the traditional channel model,the OCR can avoid the IDI problem.After that,the dimension of OCR is reduced by using the basis expansion model(BEM)and the relationship between the time and DD domain channel model,so that we have turned the underdetermined problem into an overdetermined problem.Finally,in terms of sparsity of channel in delay domain,SBL algorithm is used to estimate the basis coefficients in the BEM without any priori information of channel.The simulation results show the effectiveness and superiority of the proposed channel estimation algorithm.
基金supported by the National Natural Science Foundations of China(Nos.61401200,61201365)
文摘The sparse unmixing problem of greedy algorithms still remains a great challenge at finding an optimal subset of endmembers for the observed data from the spectral library,due to the usually high correlation of the spectral library.Under such circumstances,a novel greedy algorithm for sparse unmixing of hyperspectral data is presented,termed the recursive dictionary-based simultaneous orthogonal matching pursuit(RD-SOMP).The algorithm adopts a block-processing strategy to divide the whole hyperspectral image into several blocks.At each iteration of the block,the spectral library is projected into the orthogonal subspace and renormalized,which can reduce the correlation of the spectral library.Then RD-SOMP selects a new endmember with the maximum correlation between the current residual and the orthogonal subspace of the spectral library.The endmembers picked in all the blocks are associated as the endmember sets of the whole hyperspectral data.Finally,the abundances are estimated using the whole hyperspectral data with the obtained endmember sets.It can be proved that RD-SOMP can recover the optimal endmembers from the spectral library under certain conditions.Experimental results demonstrate that the RD-SOMP algorithm outperforms the other algorithms,with a better spectral unmixing accuracy.
文摘A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.
基金Supported by the National Natural Science Foundation of China under Grant No.60572039
文摘A superimposed training (ST) based channel estimation method is presented that provides accurate estimation of a sparse underwater acoustic orthogonal frequency-division multiplexing (OFDM) channel while improving bandwidth transmission efficiency. A periodic low power training sequence is superimposed on the information sequence at the transmitter. The channel parameters can be estimated without consuming any extra system bandwidth, but an unknown information sequence can interfere with the ST channel estimation method, so in this paper, an iterative method was adopted to improve estimation performance. An underwater acoustic channel's properties include large channel dimensions and a sparse structure, so a matching pursuit (MP) algorithm was used to estimate the nonzero taps, allowing the performance loss caused by additive white Gaussian noise (AWGN) to be reduced. The results of computer simulations show that the proposed method has good channel estimation performance and can reduce the peak-to-average ratio of the OFDM channel as well.
基金Supported by the Basic Research Foundation of Beijing Institute of Technology(3050012211105)
文摘A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality.
基金Project supported by the National Natural Science Foundation of China(Grant No.60972046)Grant from the National Defense Pre-Research Foundation of China
文摘For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.
文摘recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarriers in the frequency domain besides the conventional amplitude-phase modulation of the activated subcarriers. Orthogonal frequency division multiplexing(OFDM) with IM(OFDM-IM) is deeply compared with the classical OFDM. It leads to an attractive trade-off between the spectral efficiency(SE) and the energy efficiency(EE). In this paper, the concept of the combinatorial modulation is introduced from a new point of view. The sparsity mapping is suggested intentionally to enable the compressive sensing(CS) concept in the data recovery process to provide further performance and EE enhancement without SE loss. Generating artificial data sparsity in the frequency domain along with naturally embedded channel sparsity in the time domain allows joint data recovery and channel estimation in a double sparsity framework. Based on simulation results, the performance of the proposed approach agrees with the predicted CS superiority even under low signal-to-noise ratio without channel coding. Moreover, the proposed sparsely indexed modulation system outperforms the conventional OFDM system and the OFDM-IM system in terms of error performance, peak-to-average power ratio(PAPR) and energy efficiency under the same spectral efficiency.