期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于CatBoost优化的光伏阵列故障诊断模型 被引量:7
1
作者 彭自然 许怀顺 肖伸平 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2418-2428,共11页
大部分光伏电站地处偏僻、地形复杂的区域,受到外界环境的影响,易发生各种故障.而传统的光伏阵列故障诊断方法存在精度不高以及光伏数据利用率低等问题.针对以上问题,本文先是通过引入Levy飞行策略和步长因子动态调整策略改进麻雀搜索算... 大部分光伏电站地处偏僻、地形复杂的区域,受到外界环境的影响,易发生各种故障.而传统的光伏阵列故障诊断方法存在精度不高以及光伏数据利用率低等问题.针对以上问题,本文先是通过引入Levy飞行策略和步长因子动态调整策略改进麻雀搜索算法(Sparrow Search Algorithm,SSA),降低SSA算法陷入局部最优的风险,提升SSA算法的寻优能力.然后采用改进的Levy步长调整麻雀搜索算法(Levy Adjustment Sparrow Search Algorithm,LASSA)对CatBoost模型关键超参数进行寻优,提出了一种基于CatBoost并以LASSA为优化策略的光伏阵列故障诊断模型LASSA-CatBoost,以实现光伏阵列的短路、开路、老化和阴影遮挡故障的精确诊断.实验结果表明,LASSA-CatBoost模型的故障诊断准确率为99.7%,相较于优化前的CatBoost模型,准确率提高了3.6%.与现有的光伏阵列故障诊断模型相比,LASSA-CatBoost模型的准确性和稳定性更高. 展开更多
关键词 光伏阵列 故障诊断 I-V特性曲线 CatBoost Levy adjustment sparrow search algorithm
在线阅读 下载PDF
The SSA-BP-based potential threat prediction for aerial target considering commander emotion 被引量:10
2
作者 Xun Wang Jin Liu +1 位作者 Tao Hou Chao Pan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2097-2106,共10页
The target's threat prediction is an essential procedure for the situation analysis in an aerial defense system.However,the traditional threat prediction methods mostly ignore the effect of commander's emotion... The target's threat prediction is an essential procedure for the situation analysis in an aerial defense system.However,the traditional threat prediction methods mostly ignore the effect of commander's emotion.They only predict a target's present threat from the target's features itself,which leads to their poor ability in a complex situation.To aerial targets,this paper proposes a method for its potential threat prediction considering commander emotion(PTP-CE)that uses the Bi-directional LSTM(BiLSTM)network and the backpropagation neural network(BP)optimized by the sparrow search algorithm(SSA).Furthermore,we use the BiLSTM to predict the target's future state from real-time series data,and then adopt the SSA-BP to combine the target's state with the commander's emotion to establish a threat prediction model.Therefore,the target's potential threat level can be obtained by this threat prediction model from the predicted future state and the recognized emotion.The experimental results show that the PTP-CE is efficient for aerial target's state prediction and threat prediction,regardless of commander's emotional effect. 展开更多
关键词 Aerial targets Emotional factors Potential threat prediction BiLSTM Sparrow search algorithm Neural network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部