期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
1
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于改进麻雀搜索算法优化核极限学习机的弹丸气动参数辨识 被引量:1
2
作者 高展鹏 易文俊 《电子测量与仪器学报》 北大核心 2025年第2期72-82,共11页
弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组... 弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组合模型来辨识弹丸的气动参数,为充分挖掘SSA算法性能,提高辨识精确度,将对SSA算法的初始化策略、收敛因子和加入者的位置更新策略进行改进,采用CEC2022测试函数对改进后的麻雀搜索算法(ISSA)的改进措施的有效性进行验证,并采用ISSA优化KELM的核参数和正则化系数,提出ISSA-KELM辨识模型。研究结果表明,直接采用极限学习机(ELM)算法的辨识精确度最低,无法描述非线性区域弹丸的气动参数特征,通过在ELM算法中引入核函数提出KELM方法可以将辨识精确度提高1~4个量级,KELM和SSA-KELM等模型在非线性区域的辨识结果与真实值还有一定的差距,而采用ISSA-KELM模型的辨识结果最为精确,相比较基本的ELM算法辨识结果提高约4~5个量级,可以准确获取弹丸的气动参数,本研究为精确飞行轨迹预测和导弹性能优化提供了可靠的技术支持。 展开更多
关键词 弹丸 麻雀搜索算法 核极限学习机 气动参数辨识 非线性
在线阅读 下载PDF
基于麻雀搜索算法优化的深度极限学习向量机和感知阵列的毒害气体泄露检测方法研究
3
作者 董华青 汤旭翔 孟实 《传感技术学报》 北大核心 2025年第5期937-942,共6页
实验室是高校师生从事实践活动的重要场所,近年来高校实验室安全事故频发,因此实验室安全问题至关重要。将多个气体传感器构建的感知阵列布置在实验室中,获取环境中气体检测信息。并采用非线性方法实现对感知信号的预调理,并采用支持向... 实验室是高校师生从事实践活动的重要场所,近年来高校实验室安全事故频发,因此实验室安全问题至关重要。将多个气体传感器构建的感知阵列布置在实验室中,获取环境中气体检测信息。并采用非线性方法实现对感知信号的预调理,并采用支持向量机(SVM)算法、相关向量机(RVM)算法、K-近邻(KNN)算法、深度极限学习向量机(DELM)、麻雀搜索算法优化的深度极限学习向量机(SSA-DELM)算法建立四种不同的实验室气体泄露分类模型。研究结果证明麻雀搜索算法优化的深度极限学习向量机(SSA-DELM)算法损伤检测准确率为95%,针对实验室毒害气体泄露的预报率最高。所提出的方法具有较好的预报精度,为实验室毒害气体泄露检测提供一种新思路。 展开更多
关键词 毒害气体 实验室 感知阵列 深度极限学习 麻雀搜索算法
在线阅读 下载PDF
基于SSA-RBFNN的钢管混凝土界面粘结强度研究
4
作者 刘文博 杨喜娟 +1 位作者 王力 李子奇 《中国安全生产科学技术》 北大核心 2025年第3期148-155,共8页
为了改善传统径向基神经网络(RBFNN)存在对样本数据依赖性强、参数选择复杂、收敛速度慢等缺陷。将麻雀搜索算法(SSA)应用于RBFNN预测模型,提出基于SSA-RBFNN的CFST界面粘结强度预测模型,收集319组数据建立数据库,选取8种影响因素作为... 为了改善传统径向基神经网络(RBFNN)存在对样本数据依赖性强、参数选择复杂、收敛速度慢等缺陷。将麻雀搜索算法(SSA)应用于RBFNN预测模型,提出基于SSA-RBFNN的CFST界面粘结强度预测模型,收集319组数据建立数据库,选取8种影响因素作为输入层参数和界面粘结强度作为输出层参数,分别建立RBFNN和SSA-RBFNN模型。通过平均绝对百分比误差(MAPE)和决定系数(R 2)等指标,将2种机器学习模型与6种现有公式进行比较,评估它们在预测精度和稳定性方面的表现。研究结果表明:2种机器学习模型比公式精度更高。其中,SSA-RBFNN模型有更好的预测性能,更有助于高效预测CFST的界面粘结强度。研究结果可为CFST结构工程设计提供相应的预测方法和技术支持,可以帮助工程师在设计和施工过程中更好地评估结构的承载能力和安全性。 展开更多
关键词 RBF神经网络 麻雀搜索算法 钢管混凝土 界面粘结强度 机器学习模型
在线阅读 下载PDF
基于多域信息融合与改进ELM的船舶电机轴承故障诊断
5
作者 戈淳 闫灶宇 +1 位作者 商嘉桐 薛红涛 《中国舰船研究》 北大核心 2025年第2期68-76,共9页
[目的]针对监测信号在单一分析域内的特征参数难以完整表征监测对象的运行状态,以及极限学习机(ELM)网络的模型参数难以达到最优的问题,提出一种基于多域信息融合与改进ELM的船舶电机轴承故障诊断方法。[方法]首先,基于船舶电机轴承振... [目的]针对监测信号在单一分析域内的特征参数难以完整表征监测对象的运行状态,以及极限学习机(ELM)网络的模型参数难以达到最优的问题,提出一种基于多域信息融合与改进ELM的船舶电机轴承故障诊断方法。[方法]首先,基于船舶电机轴承振动信号在时域、频域与时频域内的特征信息,构建多域特征参数集,作为故障诊断模型的输入;然后,运用麻雀搜索算法改进ELM网络的模型参数优化方法,确定最优的权值与阈值,进而提高故障诊断ELM模型的识别精度。最后,通过船用电机试验台架实验数据和开源实验数据,对电机轴承故障状态进行识别。[结果]基于船用电机试验台架的实验数据验证表明,采用多域特征参数集的故障诊断模型在训练集和测试集上的识别精度均为100%;基于开源实验数据验证表明,改进ELM模型的测试集识别精度为90.5%,相较于原始ELM模型提高了12.7%,且训练集识别精度与测试集识别精度均高于其他诊断模型。[结论]所提方法在输入特征参数集与诊断模型上均有改进,可有效识别电机轴承故障状态,且模型具有良好的稳定性,为船舶电机轴承故障诊断提供参考。 展开更多
关键词 电动机 轴承 故障分析 故障诊断 多域信息融合 麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于SSA-KELM的输变电工程水土流失量预测研究
6
作者 雷磊 呼梦颖 +3 位作者 董子晗 师一卿 万昊 王良 《电测与仪表》 北大核心 2025年第8期189-196,共8页
针对输变电工程中水土流失量在线监测刚起步导致智能预测预警困难的问题,文中提出一种基于麻雀搜索算法和核极限学习机的输变电工程水土流失量智能预测方法。利用麻雀搜索算法(sparrow search algorithm,SSA)优化核极限学习机(kernel-ba... 针对输变电工程中水土流失量在线监测刚起步导致智能预测预警困难的问题,文中提出一种基于麻雀搜索算法和核极限学习机的输变电工程水土流失量智能预测方法。利用麻雀搜索算法(sparrow search algorithm,SSA)优化核极限学习机(kernel-based extreme learning machine,KELM)的正则化系数和核函数参数,以降雨量环境因子作为样本输入,构建SSA-KELM水土流失量预测模型。利用该预测模型对某变电站水土流失情况进行预测,并与核极限学习机和支持向量机预测方法对比。利用自主研发的现场监测系统获取水土保持监测数据,对所提预测算法进行长期测试,结果表明,基于SSA-KELM的水土流失量预测是有效的,而且比当前其他方法的预测精度更高。 展开更多
关键词 水土流失量 麻雀搜索算法 核极限学习机
在线阅读 下载PDF
基于集成CSSOA-SVM的原油近红外光谱分析系统故障诊断方法
7
作者 刘克淳 陈夕松 胡云云 《石油炼制与化工》 北大核心 2025年第7期147-152,共6页
为解决原油近红外(NIR)光谱分析系统在故障诊断中存在的高维特征、易陷入局部最优解和诊断精准度不足等问题,提出了一种基于集成混沌麻雀搜索优化算法(CSSOA)优化支持向量机(SVM)模型参数寻优过程的CSSOA-SVM故障诊断方法,其克服SVM诊... 为解决原油近红外(NIR)光谱分析系统在故障诊断中存在的高维特征、易陷入局部最优解和诊断精准度不足等问题,提出了一种基于集成混沌麻雀搜索优化算法(CSSOA)优化支持向量机(SVM)模型参数寻优过程的CSSOA-SVM故障诊断方法,其克服SVM诊断精度较差、传统麻雀搜索算法(SSA)易陷入局部最优的不足,而提升了收敛速率和分类能力;进而,结合AdaBoost学习框架集成多个CSSOA-SVM基分类模型,通过动态调整样本和基分类模型权重增强了模型对复杂故障模式的识别能力和模型稳定性。结果表明,集成CSSOA-SVM分类诊断模型对6种常见故障的诊断准确率达95.48%,相较传统方法在诊断准确率、模拟收敛速率和模型稳健性方面优势显著,为原油NIR光谱分析系统的故障诊断提供了有效解决方案。 展开更多
关键词 原油近红外光谱分析系统 故障诊断 混沌麻雀搜索优化算法 支持向量机优化 集成学习
在线阅读 下载PDF
基于AMSD-WTSSA-DELM模型的铁路沿线短期风速预测方法
8
作者 尼比江·艾力 张林鍹 +5 位作者 李奕超 景雨啸 高金山 王渊 谢明浩 罗晓龙 《铁道科学与工程学报》 北大核心 2025年第2期543-556,共14页
我国西北地区铁路沿线风速较强且存在非平稳性和波动性,导致风速预测精确度不高、模型泛化性差。基于此,提出一种基于AMSD-WTSSA-DELM的组合预测模型。首先,利用高度非平稳的原始风速序列、分量的长期相关表现、分量所包含的潜在模式及... 我国西北地区铁路沿线风速较强且存在非平稳性和波动性,导致风速预测精确度不高、模型泛化性差。基于此,提出一种基于AMSD-WTSSA-DELM的组合预测模型。首先,利用高度非平稳的原始风速序列、分量的长期相关表现、分量所包含的潜在模式及趋势和周期性等内在信息,进行每步分解处理,分别建立分解条件以及自适应更新阈值;为避免过度分解加入自适应重构方法,分解至无高复杂度分量为止,从而实现适应性较强的自适应多步分解。其次,提出WTSSA算法,即通过在麻雀搜索算法(SSA)中融入混沌映射、自适应权重和自适应t分布扰动策略,提升SSA全局搜索和局部探索能力,加快收敛速度,并通过测试函数验证WTSSA算法的卓越性。然后针对AMSD输出的各分量,分别建立由WTSSA优化权重和偏置的深度极限学习机(DELM)模型。最后汇总所有分量的预测数据,合成最终的预测输出。实验结果表明:模型在2组实际铁路沿线风速数据预测性能上提升效果明显,以第1组实验数据为例,本文方法与DELM相比,平均绝对误差(E_(mae))和均方根误差(E_(rmse))分别降低90.32%和82.25%,决定系数(R^(2))提升43.00%。综上所述,研究成果有效克服了风速的非线性特征导致的时迟问题,具有高泛化性能,能够预测短期风速变化,从而帮助铁路系统做出更有效的安全决策,为列车安全运行提供有力的技术支撑。 展开更多
关键词 短期风速预测 自适应多步分解 深度极限学习机 改进麻雀搜索算法 铁路沿线风速
在线阅读 下载PDF
多策略改进SSA优化KELM的边坡稳定性预测模型
9
作者 祁云 薛凯隆 +3 位作者 李绪萍 汪伟 白晨浩 吉准泽 《中国安全科学学报》 北大核心 2025年第3期92-98,共7页
为了能够更加精准地预测边坡稳定状态,从而有效预防边坡失稳事故,提出改进麻雀搜索算法(ISSA)与核极限学习机(KELM)相结合的ISSA-KELM边坡稳定性预测模型。首先,将边坡失稳特征中的容重、黏聚力等6个主要影响因素作为预测指标,建立边坡... 为了能够更加精准地预测边坡稳定状态,从而有效预防边坡失稳事故,提出改进麻雀搜索算法(ISSA)与核极限学习机(KELM)相结合的ISSA-KELM边坡稳定性预测模型。首先,将边坡失稳特征中的容重、黏聚力等6个主要影响因素作为预测指标,建立边坡稳定性评价数据集;其次,引入Sine混沌映射、Levy飞行策略、动态自适应权重以及融合最优爆炸策略和反向学习改进麻雀搜索算法(SSA),以提高其全局搜索能力和稳定性;而后利用ISSA优化KELM中的核参数ψ和正则化系数C,提升其预测精度,同时避免KELM出现过拟合现象;最后,对比分析ISSA-KELM模型与SSA-KELM、粒子群优化算法(PSO)-KELM以及PSO-支持向量机(SVM)模型的预测结果,并将ISSA-KELM模型应用于山西某露天煤矿。结果表明:ISSA-KELM模型的准确率、精确率、召回率和F 1分数分别达到了0.9459、1、0.8667和0.929,均优于SSA-KELM、PSO-KELM和PSO-SVM模型,模型的预测结果与实际值最为接近,表明所建ISSA-KELM模型具有较强的泛化能力。 展开更多
关键词 边坡稳定性 预测模型 改进麻雀搜索算法(ISSA) 核极限学习机(KELM) 预测指标 混淆矩阵
在线阅读 下载PDF
基于VIKOR-SSA-ELM的山区隧道结构安全评价方法
10
作者 王芝茏 杨文波 +3 位作者 寇昊 赵亮亮 曾泽润 吴枋胤 《隧道建设(中英文)》 北大核心 2025年第S1期136-145,共10页
为掌握隧道结构在山区环境中的安全状态,提出一种基于多准则妥协解排序法(VIKOR)决策模型和麻雀搜索算法(SSA)优化极限学习机(ELM)算法的山区隧道结构安全评价方法。通过调研山区隧道结构安全影响因素的文献,建立山区隧道结构安全的评... 为掌握隧道结构在山区环境中的安全状态,提出一种基于多准则妥协解排序法(VIKOR)决策模型和麻雀搜索算法(SSA)优化极限学习机(ELM)算法的山区隧道结构安全评价方法。通过调研山区隧道结构安全影响因素的文献,建立山区隧道结构安全的评语集、指标体系与指标基准;利用群体决策层次分析法(AHP)、熵权法(EWM)+CRITIC法和博弈论对评价指标进行权重计算;采用VIKOR决策模型对隧道结构安全等级进行量化,并将使用MATLAB生成的构造样本转化为用于机器学习训练的训练样本;根据参数寻优的结果,构建SSA-ELM模型,并收集48个已进行现场勘察并确定安全等级的工程实例样本进行安全预测,同时与未优化的ELM和运用粒子群算法(PSO)优化的ELM模型进行对比分析。结果表明,SSA-ELM模型的预测准确率更高。 展开更多
关键词 山区隧道 隧道结构安全评价 博弈论 多准则妥协解排序法 麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于FSSA-ELM的模拟电路故障诊断方法 被引量:3
11
作者 陈晓娟 刘禹盟 +1 位作者 曲畅 张昭华 《半导体技术》 北大核心 2024年第1期77-84,共8页
在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电... 在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电路故障数据进行特征提取,通过分数阶与麻雀搜索算法(SSA)相融合,对极限学习机(ELM)的权重和阈值进行寻优,将提取后的特征数据输入到FSSA-ELM模型中进行训练和测试。T型反馈网络反相比例运算电路诊断实例表明,FSSA-ELM的故障诊断用时相较于SSA-ELM缩短了891 s,单故障诊断准确率可达972%,比SSA-ELM和ELM分别提高了19%和28%;双故障诊断准确率可达95%,分别提高了04%和10%。该故障诊断方法准确率高、耗时短,具有较强的模拟电路故障检测能力。 展开更多
关键词 模拟电路 故障诊断 分数维度 麻雀搜索算法(SSA) 极限学习机(ELM)
在线阅读 下载PDF
基于SSA-ELM神经网络控制器的光伏MPPT方法 被引量:3
12
作者 李文娟 徐伟健 +1 位作者 肖瀚 梁树威 《实验技术与管理》 CAS 北大核心 2024年第1期158-164,共7页
光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该... 光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。 展开更多
关键词 光伏电池 最大功率点跟踪 麻雀搜索算法 极限学习机
在线阅读 下载PDF
LightGBM混合模型在乳腺癌诊断中的应用 被引量:2
13
作者 邢长征 徐佳玉 《计算机工程与应用》 CSCD 北大核心 2024年第6期330-338,共9页
乳腺癌是最常见的癌症种类之一,且患病率每年仍在上升。在不进行手术活检的情况下,通过分析细胞核的各项指标来预测肿块的良性与否,可以有效地为医生提供辅助诊疗并减少患者的痛苦。为此,提出了一种基于LightGBM算法的乳腺癌诊断模型。... 乳腺癌是最常见的癌症种类之一,且患病率每年仍在上升。在不进行手术活检的情况下,通过分析细胞核的各项指标来预测肿块的良性与否,可以有效地为医生提供辅助诊疗并减少患者的痛苦。为此,提出了一种基于LightGBM算法的乳腺癌诊断模型。使用边界-合成少数类过采样算法(borderline-synthetic minority oversampling technique,Borderline-SMOTE)来改善乳腺癌确诊数据不平衡的问题。在麻雀搜索算法(sparrow search algorithm,SSA)中引入PWLCM混沌映射、全新的惯性权重和纵横交叉算法对其进行改进,再运用改进后的SSA算法对Light-GBM的参数进行自动寻优。由于LightGBM对噪点较为敏感,所以提出了一种OVR-Jacobian正则化方法对LightGBM进行降噪处理。使用改进后的LightGBM混合模型对乳腺癌进行诊断。实验结果表明,提出的混合模型在均方误差、决定系数和交叉验证得分这三个指标上均优于常见的模型,显示出其较好的诊断效果。 展开更多
关键词 乳腺癌预测 LightGBM 麻雀搜索算法 Borderline-SMOTE算法 机器学习 Jacobian正则化
在线阅读 下载PDF
基于智能优化算法的边坡稳定性预测方法研究 被引量:2
14
作者 杨小平 段生锐 +1 位作者 蒋力 刘光辉 《水电能源科学》 北大核心 2024年第5期96-100,共5页
针对边坡稳定性预测中数据分析片面、模型预测精度低的问题,基于302个边坡案例,选取6个变量特征,利用麻雀搜索算法(SSA)更新BP神经网络的敏感因子,建立SSA-BP边坡稳定性预测模型。采用混淆矩阵、受试者工作特征(ROC)曲线及曲线下面积A_(... 针对边坡稳定性预测中数据分析片面、模型预测精度低的问题,基于302个边坡案例,选取6个变量特征,利用麻雀搜索算法(SSA)更新BP神经网络的敏感因子,建立SSA-BP边坡稳定性预测模型。采用混淆矩阵、受试者工作特征(ROC)曲线及曲线下面积A_(UC)值作为衡量指标,通过五折交叉验证法提高模型的泛化能力并与RF、BP、SVM、PSO-BP、GA-BP和LSTM 6种机器学习算法进行预测效果对比。结果表明,SSA-BP模型的A_(UC)值、准确率和F_1分数均最高,分别为91.90%、85.81%和85.87%,相较于优化前的BP网络A_(UC)值提高了23%。经典算例证明SSA-BP预测模型与ABAQUS计算的安全系数相近,并可给出可靠的预测结果,为岩土工程中边坡稳定性预测提供了一种新方法。 展开更多
关键词 边坡 稳定性预测 机器学习 麻雀搜索算法(SSA) BP网络 混淆矩阵
在线阅读 下载PDF
基于ikPCA-FABAS-KELM的短期风电功率预测 被引量:1
15
作者 徐武 范鑫豪 +2 位作者 沈智方 刘洋 刘武 《南京信息工程大学学报》 CAS 北大核心 2024年第3期321-331,共11页
为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型... 为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型运行速度;其次,引入萤火虫个体吸引策略对天牛须算法(BAS)进行改进,提出FABAS算法;最后,利用FABAS算法对核极限学习机(KELM)的正则化参数C和核参数γ进行寻优,降低人为因素对模型盲目训练的影响,提高模型预测精度.仿真结果显示,提出的预测模型有效提高了传统模型的预测精度. 展开更多
关键词 短期风电功率预测 萤火虫算法 天牛须算法 核主成分分析 核极限学习机
在线阅读 下载PDF
甘蔗收获机根部切割系统负载压力预测模型研究
16
作者 麻芳兰 罗一鸣 +3 位作者 李嘉诚 苗金泽 叶凤滋 陈彬 《农业机械学报》 CSCD 北大核心 2024年第12期81-89,共9页
为了提高甘蔗收获机切割深度控制系统的适用范围和准确度,针对当前参考压力设定无法根据土壤参数和机车参数自动调整的问题,建立了负载压力预测模型。通过正交试验方法对负载压力与入土切割深度、喂入量、土壤含水率、土壤坚实度之间的... 为了提高甘蔗收获机切割深度控制系统的适用范围和准确度,针对当前参考压力设定无法根据土壤参数和机车参数自动调整的问题,建立了负载压力预测模型。通过正交试验方法对负载压力与入土切割深度、喂入量、土壤含水率、土壤坚实度之间的关系进行了数据采集,并将试验数据作为负载压力预测模型的训练样本和测试样本。根据训练样本建立极限学习机(ELM)和基于麻雀搜索算法优化的极限学习机(SSA-ELM)负载压力预测模型,并通过测试样本对预测模型进行性能评价。结果表明,与ELM模型相比,SSA-ELM预测模型平均绝对误差、平均相对误差和均方根误差在黄壤条件下降低50.00%、44.14%和44.44%,在红壤条件下降低58.33%、56.98%和57.14%。为了检验负载压力预测模型在实际收获过程中的适用性,在试验平台上模拟蔗地遇到的各种工况,将预测模型应用于现有控制系统进行试验。结果表明,当入土切割深度为20 mm、作业速度为0.34 m/s、刀盘转速为700 r/min时,预测模型满足参考压力的设定要求,且切割深度与目标深度最大误差不大于5 mm,满足甘蔗收获生产的实际要求。 展开更多
关键词 甘蔗收获机 入土切割 负载压力 极限学习机 麻雀搜索算法 预测模型
在线阅读 下载PDF
基于SSA-ELM算法的基坑地表沉降预测 被引量:6
17
作者 刘银涛 任超 《桂林理工大学学报》 CAS 北大核心 2024年第3期471-475,共5页
针对传统的极限学习机算法(ELM)在进行深基坑的地表沉降预测时易陷入局部极小、网络结构中参数选取不准确及预测精度不佳等问题,提出了一种基于麻雀搜索算法(SSA)优化极限学习机算法的基坑地表沉降预测模型。根据麻雀搜索算法收敛速度... 针对传统的极限学习机算法(ELM)在进行深基坑的地表沉降预测时易陷入局部极小、网络结构中参数选取不准确及预测精度不佳等问题,提出了一种基于麻雀搜索算法(SSA)优化极限学习机算法的基坑地表沉降预测模型。根据麻雀搜索算法收敛速度快、寻优能力与稳定性较强等特点,对极限学习机算法中的连接权值与阈值进行优化,并将优化后的模型应用于基坑的地表沉降预测。将麻雀搜索算法优化后的极限学习机算法(SSA-ELM)与ELM、 GA-ELM、 PSO-ELM算法进行预测精度对比,结果表明:SSA-ELM算法的预测精度高于ELM、 GA-ELM、 PSO-ELM算法,且其稳定性更强,在基坑的地表沉降预测方面效果更好,实现了提高预测精度的目的,具有一定的可行性和实用性。 展开更多
关键词 极限学习机 麻雀搜索算法 优化 沉降预测 基坑
在线阅读 下载PDF
基于相似日聚类和PCC-VMD-SSA-KELM模型的短期光伏功率预测 被引量:9
18
作者 李争 张杰 +3 位作者 徐若思 罗晓瑞 梅春晓 孙鹤旭 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期460-468,共9页
由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输... 由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输入;K-均值算法进行相似日聚类,将历史数据聚类为晴天、多云和雨天;其次,VMD对原始信号进行分解,充分提取集合中的输入因素信息,提高数据质量;SSA优化KELM模型的核函数参数和正则化系数解决其参数选择敏感问题;最后,将不同序列预测值叠加得到最终预测结果。仿真结果表明,所提相似日聚类下PCC-VMD-SSA-KELM模型具有较小的预测误差。 展开更多
关键词 光伏发电 功率预测 变分模态分解 K-均值 麻雀算法 核函数极限学习机
在线阅读 下载PDF
基于VMD和优化SSA-ELM的齿轮箱故障诊断 被引量:3
19
作者 孟博 郇战 +3 位作者 时文雅 余中舟 周靖诺 王佳晖 《郑州大学学报(理学版)》 CAS 北大核心 2024年第2期80-86,共7页
针对传统滤波器对齿轮箱信号去噪不充分和模型识别准确率低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和改进麻雀搜索算法(sparrow search algorithm,SSA)来优化极限学习机(extreme learning machine,ELM)... 针对传统滤波器对齿轮箱信号去噪不充分和模型识别准确率低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和改进麻雀搜索算法(sparrow search algorithm,SSA)来优化极限学习机(extreme learning machine,ELM)的齿轮箱故障诊断模型。通过改进VMD后含噪分量的选取方式,并结合小波包阈值处理对齿轮箱信号进行滤噪,在提取时频域有效特征的基础上,通过Tent混沌映射和引入微分递减因子改进SSA以优化ELM模型进行分类识别。实验结果表明,所提模型对齿轮箱故障工况的分类准确率达到99.50%,在故障诊断精度提升的同时收敛速度更快,验证了模型的可行性。 展开更多
关键词 齿轮箱故障诊断 变分模态分解 小波包去噪 Tent混沌 麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于机器学习的工业机器人多目标轨迹规划 被引量:2
20
作者 张学聪 晁永生 +1 位作者 李纯艳 周江林 《现代制造工程》 CSCD 北大核心 2024年第2期31-37,共7页
为满足机器人工作轨迹的多样化需求,以时间、能量及冲击为优化目标提出了一种新的多目标麻雀搜索算法,用于寻找机器人的最优轨迹。首先,通过7次B样条插值方法构造关节空间轨迹,以此确立多目标综合最优轨迹规划模型。其次,采用违反约束... 为满足机器人工作轨迹的多样化需求,以时间、能量及冲击为优化目标提出了一种新的多目标麻雀搜索算法,用于寻找机器人的最优轨迹。首先,通过7次B样条插值方法构造关节空间轨迹,以此确立多目标综合最优轨迹规划模型。其次,采用违反约束度计算、非支配排序以及精英保留来改进麻雀搜索算法,使其能够处理机器人多目标轨迹规划问题。最后,用袋装树分类算法对随机种群内数据进行了筛选,并搭建5层BP神经网络来替代改进多目标麻雀搜索算法中适应度值的数值计算部分,从而提高算法求解效率。通过MATLAB仿真与实验证明了该算法优化所得轨迹的可行性及有效性。 展开更多
关键词 工业机器人 轨迹规划 机器学习 麻雀搜索算法 多目标优化
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部