期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
基于t-SNE和ECOC-ISSA-SVM的变压器故障诊断
1
作者 刘蒙 赵晨晓 +4 位作者 朱乔波 李梁 姚旭 李鑫 赵明 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第5期606-613,共8页
为解决电力变压器故障诊断中支持向量机(support vector machine,SVM)超参数优化和多分类性能不足的问题,采用t-分布的随机邻居嵌入(t-distributed stochastic neighbor embedding,t-SNE)对26维溶解气体分析(DGA)数据进行非线性降维,引... 为解决电力变压器故障诊断中支持向量机(support vector machine,SVM)超参数优化和多分类性能不足的问题,采用t-分布的随机邻居嵌入(t-distributed stochastic neighbor embedding,t-SNE)对26维溶解气体分析(DGA)数据进行非线性降维,引入纠错输出码(error correction output codes,ECOC),将改进麻雀搜索算法(improved sparrow search algorithm,ISSA)与切比雪夫混沌映射、柯西-高斯变分策略相结合,优化SVM超参数,处理多分类问题。研究结果表明:ECOC-ISSA-SVM(t-SNE)模型的诊断精度、召回率、特异性和F1值分别为95.6%、97.8%、99.6%和97.8%,各项指标较传统模型提升效果显著,诊断时间缩短至11 ms,诊断效率显著提高。研究结论为电力设备智能运维提供技术支持。 展开更多
关键词 故障诊断 变压器 油中溶解气体 支持向量机 麻雀搜索算法 t-SNE降维 纠错输出码
在线阅读 下载PDF
基于KPCA-ISSA-SVM的控制图模式识别
2
作者 梁旭 张朝阳 +1 位作者 吉卫喜 张文博 《组合机床与自动化加工技术》 北大核心 2025年第7期128-134,140,共8页
针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)... 针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)复合映射和高斯变异来改进麻雀搜索算法对SVM的关键参数进行寻优;接着建立KPCA-ISSA-SVM模型对控制图模式进行识别;最后通过仿真实验,将所提模型与RF、CNN、SVM、KPCA-SVM、KPCA-SSA-SVM、KPCA-PSO-SVM模型进行对比,并以某电梯零部件企业的机加工车间为例,验证了该方法的可行性和有效性。仿真与实例结果表明,所提方法是一种更有效的控制图模式识别方法。 展开更多
关键词 控制图 模式识别 核主成分分析 改进麻雀搜索算法 支持向量机
在线阅读 下载PDF
特征降维下基于LSSA-SVM的转子系统故障诊断模型
3
作者 史宗帅 亚森江·加入拉 +1 位作者 崔鹏飞 靳鹏飞 《机电工程》 北大核心 2025年第3期463-471,500,共10页
针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,... 针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,采用小波分析技术对原始的转子振动信号进行了去噪处理,通过提取信号的时域特征以精确表征不同的转子故障状态,确保了该特征在噪声干扰下仍能清晰反映故障模式;然后,采用PCA对所提取的高维特征进行了降维处理,有效减少了冗余信息和噪声干扰,保留了最具代表性的关键特征,从而提高了特征提取的效率与诊断的可靠性;最后,设计了Levy飞行策略,对SSA进行了改进,得到了改进后的麻雀搜索算法(LSSA),以优化SVM的参数选择,进一步提升了分类器的泛化能力,利用改进的算法增强了该模型在复杂、有噪声环境下的诊断性能。研究结果表明:通过在多个含噪声的转子故障数据集上进行实验,该方法的故障诊断准确率达到了98.5%,相较于传统诊断方法,其具有更强的鲁棒性和较高的诊断精度,特别是在有噪环境中的优势更为明显。该方法有效解决了噪声干扰对故障诊断精度的影响问题,显著提高了转子故障诊断的准确性和稳定性,为实际工程中的转子故障诊断提供了一种有效的解决方案。 展开更多
关键词 轴承故障诊断 莱维飞行 改进的麻雀搜索算法 支持向量机 主成分分析 主成分分析特征降维 小波阈值函数去噪
在线阅读 下载PDF
基于VMD-MSE与SSA-SVM的往复式压缩机气阀故障诊断 被引量:16
4
作者 别锋锋 朱鸿飞 +1 位作者 彭剑 张莹 《振动与冲击》 EI CSCD 北大核心 2022年第19期289-295,共7页
往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提... 往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提取方法,并与采用麻雀寻优算法(soarrow search algorithm,SSA)优化的支持向量机(suppot vector mackine,SVM)相结合,用于往复压缩机气阀故障诊断;通过对往复压缩机气阀信号进行VMD分解,选取合适的内禀模态分量(intrinsic mode function,IMF)进行信号重构,基于MSE熵值分析构成特征向量集,最后将其输入SSA-SVM训练并识别故障类型。试验结果表明,基于VMD-MSE与SSA-SVM的故障诊断模型能有效并准确的识别往复压缩机气阀故障。 展开更多
关键词 往复压缩机 变分模态分解 多尺度样本熵 支持向量机 模式识别
在线阅读 下载PDF
基于SSA-SVM的海杂波背景下小信号检测方法 被引量:12
5
作者 王海峰 行鸿彦 +1 位作者 陈梦 陈子正 《电子测量与仪器学报》 CSCD 北大核心 2022年第4期24-31,共8页
针对传统检测方法不能有效地从强混沌背景噪声中检测出小信号,本文研究了强杂波背景下小目标检测原理,提出了一种基于SSA-SVM的混沌小信号检测方法。利用麻雀搜索算法优化SVM惩罚参数C与核函数参数σ提高预测准确性,从而降低检测门限,... 针对传统检测方法不能有效地从强混沌背景噪声中检测出小信号,本文研究了强杂波背景下小目标检测原理,提出了一种基于SSA-SVM的混沌小信号检测方法。利用麻雀搜索算法优化SVM惩罚参数C与核函数参数σ提高预测准确性,从而降低检测门限,提高检测率。在Lorenz混沌系统中加入目标信号进行仿真,结果表明:提出的方法能有效地从强混沌背景噪声中检测出小信号,瞬态小信号预测的均方根误差为0.0004343(信噪比为-137.7073 dB),比传统SVM算法预测信号的均方根误差0.049(信噪比为-54.60 dB)降低了两个数量级。利用IPIX雷达实测海杂波数据,对所提方法进行实验验证,进一步说明了该方法的有效性。 展开更多
关键词 微弱信号检测 支持向量机 麻雀搜索算法 海杂波
在线阅读 下载PDF
基于CHMM和SSA-SVM模型的高速铁路道岔设备健康状态评估方法 被引量:7
6
作者 王彦快 米根锁 +2 位作者 张玉 王宇峰 王朋雨 《铁道学报》 EI CAS CSCD 北大核心 2023年第11期107-116,共10页
为更加精准地评估道岔设备健康状态,加强对设备的维护与管理,以ZDJ9型转辙机驱动的高速铁路道岔设备为研究对象,提取道岔功率曲线的时域、频域特征指标及经验模态分解奇异值熵,组成道岔特征指标向量,并采用核主成分分析法消除原始多维... 为更加精准地评估道岔设备健康状态,加强对设备的维护与管理,以ZDJ9型转辙机驱动的高速铁路道岔设备为研究对象,提取道岔功率曲线的时域、频域特征指标及经验模态分解奇异值熵,组成道岔特征指标向量,并采用核主成分分析法消除原始多维特征信息的冗余,构建道岔特征指标样本数据库;利用连续隐马尔可夫模型划分道岔退化状态,在此基础上,建立麻雀搜索算法优化支持向量机的健康状态综合评估模型。研究结果表明:所构建的健康状态评估模型的评估正确率高达98.75%,不仅能够实现高铁道岔设备健康状态综合评估效能,而且明显优于GridSearch-SVM、GA-SVM、PSO-SVM等组合算法,为实现道岔设备由“故障修”到“状态修”的综合智能维护提供可行途径。 展开更多
关键词 高铁道岔设备 健康状态评估 连续隐马尔可夫模型 麻雀搜索算法优化支持向量机 核主成分分析
在线阅读 下载PDF
基于FASSA-SVM的充电桩故障预测算法研究 被引量:11
7
作者 张梅 高犁 陈万利 《电子测量技术》 北大核心 2022年第12期48-53,共6页
为了电动汽车直流充电桩的安全稳定运行,提出一种基于改进支持向量机的充电桩故障预测算法。该算法首先针对充电桩的运行参数进行缺失值填充、归一化等预处理;然后将预处理后的数据输入支持向量机模型训练,之后引入萤火虫算法改进麻雀... 为了电动汽车直流充电桩的安全稳定运行,提出一种基于改进支持向量机的充电桩故障预测算法。该算法首先针对充电桩的运行参数进行缺失值填充、归一化等预处理;然后将预处理后的数据输入支持向量机模型训练,之后引入萤火虫算法改进麻雀算法对支持向量机模型进行参数寻优,得到最优模型;最后利用得到的最优模型预测诊断充电桩运行状态,来判断充电桩是否发生故障。实验结果表明,本文的预测算法预测精度可达94.68%,远高于传统的支持向量机模型的72.34%,能较准确地预测充电桩运行状态,为其预知维修、保障安全运行提供有力保障。 展开更多
关键词 充电桩 故障预测 支持向量机 麻雀搜索算法 萤火虫算法
在线阅读 下载PDF
EEMD-GSSA-SVM滚动轴承故障诊断方法研究 被引量:9
8
作者 宋立业 孙琳 《传感器与微系统》 CSCD 北大核心 2022年第4期56-59,共4页
针对现有滚动轴承故障诊断算法诊断准确度不高的问题,提出了一种基于集合经验模态分解(EEMD)以及全局麻雀群搜索算法(GSSA)优化支持向量机(SVM)的滚动轴承故障诊断方法。所提方法利用EMMD以及能量矩对原始信号进行模态分解与特征提取。... 针对现有滚动轴承故障诊断算法诊断准确度不高的问题,提出了一种基于集合经验模态分解(EEMD)以及全局麻雀群搜索算法(GSSA)优化支持向量机(SVM)的滚动轴承故障诊断方法。所提方法利用EMMD以及能量矩对原始信号进行模态分解与特征提取。为提高诊断精度,提出一种GSSA-SVM算法。首先提出一种对原始麻雀搜索算法(SSA)中的探索粒子更新方式进行全局化改进,以提高其迭代速度与计算精度的GSSA,然后建立GSSA-SVM模型。最后,利用所提算法对实测信号进行诊断分析,验证了所提方法的有效性与优越性。 展开更多
关键词 故障诊断 集合经验模态分解 全局麻雀搜索算法 支持向量机
在线阅读 下载PDF
基于MCMC填补的SSA-SVM煤与瓦斯突出预测模型 被引量:5
9
作者 邵良杉 高英超 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第8期94-99,共6页
为提升煤与瓦斯突出预测准确度,减小数据缺失对煤与瓦斯突出预测的不利影响,提出1种基于链式多重填补马尔科夫链蒙特卡罗(MCMC)的麻雀搜索算法(SSA)优化支持向量机(SVM)预测模型。根据突出影响因素选取模型参数,运用MCMC对突出事故缺失... 为提升煤与瓦斯突出预测准确度,减小数据缺失对煤与瓦斯突出预测的不利影响,提出1种基于链式多重填补马尔科夫链蒙特卡罗(MCMC)的麻雀搜索算法(SSA)优化支持向量机(SVM)预测模型。根据突出影响因素选取模型参数,运用MCMC对突出事故缺失值进行数据填补,采用SSA优化SVM,建立MCMC-SSA-SVM模型对填补后数据集进行预测,验证MCMC填补有效性和SSA优化性能;分别构建SVM、SSA-SVM、PSO-SVM、GAM-SVM、CMC-SVM、MCMC-PSO-SVM和MCMC-GA-SVM这7种模型进行突出预测,对比预测准确度,分析MCMC-SSA-SVM、MCMC-PSO-SVM和MCMC-GA-SVM的适应度。研究结果表明:MCMC填补后准确度均提升7.89个百分点以上,SSA的优化性能强于PSO和GA,MCMC-SSA-SVM预测准确度最高,为97.37%,泛化能力优于对比模型。研究结果可为煤与瓦斯突出预测研究提供借鉴和参考。 展开更多
关键词 煤与瓦斯突出预测 马尔科夫链蒙特卡罗(MCMC) 麻雀搜索算法(SSA) 数据填补 支持向量机(SVM)
在线阅读 下载PDF
牛奶蛋白质含量的SSA-SVM高光谱预测模型 被引量:25
10
作者 刘美辰 薛河儒 +4 位作者 刘江平 代荣荣 胡鹏伟 黄清 姜新华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第5期1601-1606,共6页
牛奶中包含着很多人体需要的营养元素,如脂肪、蛋白质、钙等;对牛奶营养元素进行分析是牛奶安全检测关键的一部分。高光谱技术可以有效地结合图像和光谱数据识别牛奶种营养元素。为了实现对牛奶中蛋白质含量快速、精确的预测,采用竞争... 牛奶中包含着很多人体需要的营养元素,如脂肪、蛋白质、钙等;对牛奶营养元素进行分析是牛奶安全检测关键的一部分。高光谱技术可以有效地结合图像和光谱数据识别牛奶种营养元素。为了实现对牛奶中蛋白质含量快速、精确的预测,采用竞争性自适应重加权(CARS)算法选取特征波长,并提出一种基于麻雀搜索算法(SSA)优化支持向量机(SVM)实现对牛奶蛋白质含量预测。利用高光谱仪获取牛奶反射光谱(400~1000nm)。通过选取归一化(N)、标准化(Standardization)和多元散射校正(MSC)对原始的牛奶数据进行光谱降噪处理提高光谱利用率;利用竞争性自适应重加权算法和连续投影算法(SPA)对经过处理的牛奶光谱数据提取特征波长,求取蛋白质和光谱间的相关系数并进行重要性排序,获取重要的特征波段;最后,通过遗传算法(GA)优化SVM,粒子群算法(PSO)优化SVM和偏最小二乘法(PLS)算法对牛奶蛋白质进行预测并比较预测结果,为了提高蛋白质预测的精度和模型稳定性,提出利用SSA对SVM的核函数g和惩罚参数c进行优化,以均方根误差(RMSE)作为适应度函数,通过迭代选择最优的回归参数训练模型。牛奶数据预测结果表明最优组合模型为:MSC-CARS-SSA-SVM。模型测试集的决定系数R^(2)为0.9996,均方根误差RMSE为0.0011,耗时4.1121s。结果表明:使用CARS算法能实现特征波段的提取和冗余信息的剔除,从而提高模型效率,简化了算法的复杂度;SSA算法优化SVM的参数,通过迭代更新麻雀最优位置,可以快速得到全局最优解,与SVM,GA-SVM,PSO-SVM和PLS相比,牛奶蛋白质的预测准确度和模型稳定性都得到了明显提高,满足了对乳品检测的精确度要求,是快速检测牛奶蛋白质的一个可行新方法。为光谱模型的优化及预测模型精度的提高提供参考。 展开更多
关键词 高光谱 牛奶蛋白质 竞争性自适应重加权算法 支持向量机 麻雀算法
在线阅读 下载PDF
基于CEEMDAN多尺度熵和SSA-SVM的滚动轴承故障诊断研究 被引量:45
11
作者 李怡 李焕锋 刘自然 《机电工程》 CAS 北大核心 2021年第5期599-604,共6页
针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM... 针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM参数优化进行了研究,引入了一种新的群智能优化算法,用麻雀搜索算法(SSA)对SVM参数进行了优化,提高了寻优速度以及轴承的故障分类准确率;该方法先采用自适应白噪声完整经验模态分解(CEEMDAN)算法分解信号,获得了若干个固有模态函数(IMF);再采用相关系数方法选择有用IMF分量,并进行了重新组合;最后,计算重构信号的多尺度熵作为特征向量,输入SSA优化的SVM进行了故障分类。研究结果表明:采用该方法能够准确地获得故障信息,且识别准确率高;与PSO、GA优化的SVM相比,该方法的故障诊断分类性能更好。 展开更多
关键词 自适应白噪声完整经验模态分解 多尺度熵 麻雀搜索算法 支持向量机 故障诊断
在线阅读 下载PDF
基于LIBS和SSA-SVM的绿茶采收期鉴别研究 被引量:1
12
作者 陶雷 何秀文 +3 位作者 蔡广源 程占东 徐将 姚明印 《江西农业大学学报》 CAS CSCD 北大核心 2023年第3期719-725,共7页
[目的]茶叶采收期极大地影响其经济价值和消费者接受度。为实现不同采收期茶叶的快速分类鉴别,研究激光诱导击穿光谱(LIBS)结合麻雀搜索优化支持向量机(SSA-SVM)算法茶叶鉴别方法。[方法]以相同产地明前、明后、夏季、秋季采收绿茶为对... [目的]茶叶采收期极大地影响其经济价值和消费者接受度。为实现不同采收期茶叶的快速分类鉴别,研究激光诱导击穿光谱(LIBS)结合麻雀搜索优化支持向量机(SSA-SVM)算法茶叶鉴别方法。[方法]以相同产地明前、明后、夏季、秋季采收绿茶为对象,每类茶叶采集100幅LIBS光谱数据,以3∶2的比例随机划分训练集和测试集。采用阈值寻峰对基线校正后的LIBS光谱进行特征提取,优选出20组谱线数据,输入SSA-SVM分类模型。[结果]4类茶叶平均识别准确率为98.8%。与遗传算法(GA)和粒子群(PSO)优化的SVM模型对比,SSA-SVM具有更好的优越性。[结论]LIBS结合SSA-SVM算法对绿茶采收期快速鉴别具有可行性。 展开更多
关键词 光谱学 激光诱导击穿光谱 麻雀搜索算法 支持向量机 茶叶鉴别
在线阅读 下载PDF
基于MSSA-SVM的电缆隧道故障预警系统设计 被引量:6
13
作者 纪超 王亮 +2 位作者 王孝敬 李小兵 曹雯 《工程设计学报》 CSCD 北大核心 2023年第1期109-116,共8页
为了实现电缆隧道环境的在线监测和故障报警,提高电缆隧道监测系统的智能化水平,提出了一种基于多特征麻雀搜索算法(multi-feature modified sparrow search algorithm, MSSA)优化支持向量机(support vector machines, SVM)的故障预警... 为了实现电缆隧道环境的在线监测和故障报警,提高电缆隧道监测系统的智能化水平,提出了一种基于多特征麻雀搜索算法(multi-feature modified sparrow search algorithm, MSSA)优化支持向量机(support vector machines, SVM)的故障预警系统。首先,对故障数据集进行归一化预处理;其次,建立多分类SVM模型,用MSSA对SVM进行参数寻优,从而建立MSSA-SVM模型,并将训练好的MSSA-SVM模型嵌入故障预警系统的数据库服务器中,对实时采集的数据进行在线监测、诊断,并及时报警;最后,通过实验验证了MSSA-SVM模型的有效性,并将其与麻雀搜索算法(sparrow search algorithm, SSA)、灰狼优化算法(grey wolf optimization, GWO)和粒子群算法(particle swarm optimization, PSO)进行对照实验,实验结果表明,MSSA-SVM模型的故障识别准确率最高,其识别准确率可达95%。研究结果为有效提高电缆隧道在线监测的智能性和准确性提供了参考。 展开更多
关键词 电缆隧道 监测系统 支持向量机 故障诊断 多特征麻雀搜索算法
在线阅读 下载PDF
基于SSA-SVM的巷道顶板空顶沉降量预测模型 被引量:4
14
作者 于冰冰 李清 +2 位作者 赵桐德 黄晨 高正华 《煤炭学报》 EI CAS CSCD 北大核心 2024年第S01期57-71,共15页
为解决煤矿深部井巷工程巷道掘进顶板空顶期沉降量的预测问题,引入人工智能的支持向量机(SVM)工具,结合麻雀搜索优化算法(SSA),提出基于SSA-SVM的巷道顶板空顶沉降量预测模型。以内蒙古长城五矿深部地下巷道掘进过程的顶板空顶期位移量... 为解决煤矿深部井巷工程巷道掘进顶板空顶期沉降量的预测问题,引入人工智能的支持向量机(SVM)工具,结合麻雀搜索优化算法(SSA),提出基于SSA-SVM的巷道顶板空顶沉降量预测模型。以内蒙古长城五矿深部地下巷道掘进过程的顶板空顶期位移量数据作为样本集合,选择单轴抗压强度(UCS)、岩石完整性(RQD)、地应力、巷道宽跨比、空顶时间、人为采动6项影响因素,通过适用性、相关性和归类一致性评价对数据的综合影响权重进行归纳整理。将十折交叉验证的准确率作为适应度函数,对不同种群数量的SSA-SVM预测模型展开训练和测试,通过误差相关系数(RMSE、MAPE、R^(2))、ROC曲线、AUC±Std、运行时间以及标准偏差率η等5方面来选择种群数量最优参数模型,并将该模型应用于1902S回风巷进行巷道掘进顶板空顶期的沉降量预测,同巷道实际矿压监测数据进行比较。研究结果表明:当种群数量为90时,SSA-SVM模型预测性能较好,训练样本的RMSE为0.0165,MAPE为22.54%,R^(2)为0.8295;测试样本的RMSE为0.0156,MAPE为22.37%,R^(2)为0.8490;真实度AUC达到最大0.8467,离散度Std最小为0.0115;运行时间最短为8.7239 s;标准偏差率维持在0.12%。在1902S回风巷现场应用中,预测值与实际值没有出现较大偏差,维持在线性拟合y=0.90x和y=1.10x范围内,误差相关系数与AUC±Std均符合试验精度要求,该模型的预测效果能够对后续的支护设计及补强支护作业提供重要的指导。 展开更多
关键词 空顶期 顶板沉降量 支持向量机 麻雀搜索算法 误差相关系数
在线阅读 下载PDF
基于MISSA-SVM模型的边坡稳定性预测及应用 被引量:5
15
作者 王团辉 王超 +2 位作者 吴顺川 王琦玮 徐健珲 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期135-144,共10页
为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型。选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6个代表性特征作为模型的预测指标。针... 为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型。选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6个代表性特征作为模型的预测指标。针对麻雀优化算法(SSA)存在的收敛速度慢、精确度不高、易陷入局部最优等问题,引入一维复合混沌映射、正余弦算法(SCA)、Levy飞行机制和步长因子动态调整等策略进行优化改进,构建基于MISSA-SVM的边坡稳定性预测模型。将MISSA-SVM模型应用到大溪滑坡等9组边坡工程实例进行验证。结果表明:MISSA-SVM模型的准确率、精确率、召回率、F_(1)分数、均方误差(MSE)和曲线下面积(AUC)分别达到96.29%、92.3%、100%、0.96、0.016和0.967,均优于SSA优化的SVM模型和BP模型,预测结果与实际边坡状况完全吻合,表明MISSA-SVM模型具有较强的泛化能力。 展开更多
关键词 多策略改进麻雀搜索算法(MISSA) 支持向量机(SVM) 边坡稳定性 正余弦算法(SCA) 预测指标
在线阅读 下载PDF
基于ISSA-SVM的钻井卡钻事故预测 被引量:4
16
作者 陈晓 张奇志 +2 位作者 王鑫 黄圣杰 陈浩宇 《科学技术与工程》 北大核心 2024年第8期3207-3214,共8页
为预防钻井过程中卡钻事故的发生,通过提出了一种改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量机(support vector machines,SVM)的预测模型方法(ISSA-SVM),在发现者位置更新公式中引入一种改进的自适应非线... 为预防钻井过程中卡钻事故的发生,通过提出了一种改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量机(support vector machines,SVM)的预测模型方法(ISSA-SVM),在发现者位置更新公式中引入一种改进的自适应非线性惯性递减权重;在警戒者位置更新公式中引入莱维飞行策略。利用主成分分析法(principal component analysis,PCA)对外国某大型油田的实测钻井数据进行降维处理,并利用惩罚参数和核参数进行卡钻事故的预测。实验结果表明:ISSA-SVM的预测准确率高达85.1852%,且收敛速度更快,可见ISSA-SVM可有效预测钻井卡钻事故。 展开更多
关键词 钻井 卡钻 麻雀搜索算法(SSA) 支持向量机(SVM) 主成分分析法(PCA)
在线阅读 下载PDF
基于SSA-SVM模型的台风风暴潮灾害损失评估 被引量:3
17
作者 郝婧 刘强 《海洋地质前沿》 CSCD 北大核心 2022年第11期65-72,共8页
受全球气候变化影响,台风风暴潮造成的损失显著增加,准确构建高效、合理的损失评估模型对海洋灾害防灾减灾工程具有重大现实意义。使用4组指标构建台风风暴潮指标体系,并通过主成分分析筛选出输入因子。采用麻雀搜索算法优化支持向量机... 受全球气候变化影响,台风风暴潮造成的损失显著增加,准确构建高效、合理的损失评估模型对海洋灾害防灾减灾工程具有重大现实意义。使用4组指标构建台风风暴潮指标体系,并通过主成分分析筛选出输入因子。采用麻雀搜索算法优化支持向量机模型对台风风暴潮损失分级和直接经济损失进行评估,与其他优化算法进行比较分析,发现该模型具有更好的预测精确性。对指标体系中的4组指标分别进行评估,得出指标的有效性大小为危险性指标>气候变化指标>易损性指标>防灾减灾能力指标,表明了该实验的合理性,为防灾减灾事业提供了有效的评估方式。 展开更多
关键词 台风风暴潮 损失评估 麻雀搜索算法 支持向量机
在线阅读 下载PDF
Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling 被引量:17
18
作者 JI Ya-feng SONG Le-bao +3 位作者 SUN Jie PENG Wen LI Hua-ying MA Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2333-2344,共12页
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance... To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling. 展开更多
关键词 strip crown support vector machine principal component analysis cuckoo search algorithm particle swarm optimization algorithm
在线阅读 下载PDF
基于EEMD能量矩与ISSA-SVM算法的GIS局部放电类型识别方法 被引量:19
19
作者 王利福 刘屹江泽 王燚增 《电子测量与仪器学报》 CSCD 北大核心 2022年第5期204-212,共9页
为有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)类型,进而保障设备安全稳定运行,提出了一种基于集合模态分解(ensemble empirical mode decomposition,EEMD)联合能量矩与改进麻雀群搜索... 为有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)类型,进而保障设备安全稳定运行,提出了一种基于集合模态分解(ensemble empirical mode decomposition,EEMD)联合能量矩与改进麻雀群搜索算法优化支持向量机(improved sparrow search algorithm-support vector machines,ISSA-SVM)算法的GIS局部放电类型识别方法。首先搭建能产生4种局部放电类型效果的GIS局部放电实验平台,以获取4种局部放电信号,然后利用EEMD联合能量矩算法分别对4种局部放电信号进行模态分解与特征向量提取,最后利用经ISSA算法优化后的SVM算法对GIS局部放电类型进行识别。实验结果表明,所提方法可有效识别GIS不同局部放电类型,且较PSO-SVM与SSA-SVM算法识别精度分别提高了16.7%与8.5%,验证了所提GIS局部放电类型识别方法的有效性以及优越性。 展开更多
关键词 气体绝缘开关组合电器 局部放电 集合模态分解 改进麻雀群搜索算法优化支持向量机(Issa-svm)
在线阅读 下载PDF
基于NRS-ISSA-SVM的砂土液化判别模型 被引量:11
20
作者 姜礼涛 周爱红 +3 位作者 袁颖 刘育林 宁志杰 牛建广 《地震工程学报》 CSCD 北大核心 2022年第3期570-578,共9页
针对砂土液化判别中影响因素与砂土状态间映射关系的不确定性及模糊性等问题,在邻域粗糙集(Neighborhood Rough Set,NRS)因素约简的基础上,利用多策略融合的改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化支持向量机(Su... 针对砂土液化判别中影响因素与砂土状态间映射关系的不确定性及模糊性等问题,在邻域粗糙集(Neighborhood Rough Set,NRS)因素约简的基础上,利用多策略融合的改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化支持向量机(Support Vector Machine,SVM)参数C和g,构建了SVM砂土液化判别模型。以吉林松原地区的42组实例作为总体样本集,其中35组作为训练集,另外7组作为测试集,利用邻域粗糙集对9个影响因素约简得到4个因素,然后输入ISSA-SVM模型进行预测,并进行了约简得到的因素敏感性分析。结果表明:因素约简剔除了冗余属性,降低了模型复杂度;ISSA算法具有极强的探索性、收敛性和局部逃逸能力;相比于其他模型,NRS-ISSA-SVM砂土液化判别模型精度更高,泛化能力更强;建议要判别砂土的液化状态,需要准确查明水位埋深、地震烈度、标准贯入击数,非液化土层厚度这4个因素,尤其是前三个因素。通过易获取的影响因素建立NRS-ISSA-SVM砂土液化判别模型,不仅可准确地判断该区域其余未知点的砂土状态,还可为其他类似问题提供参考借鉴。 展开更多
关键词 砂土液化 预测模型 支持向量机 邻域粗糙集 多策略融合的改进麻雀搜索算法
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部