期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
基于t-SNE和ECOC-ISSA-SVM的变压器故障诊断
1
作者 刘蒙 赵晨晓 +4 位作者 朱乔波 李梁 姚旭 李鑫 赵明 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第5期606-613,共8页
为解决电力变压器故障诊断中支持向量机(support vector machine,SVM)超参数优化和多分类性能不足的问题,采用t-分布的随机邻居嵌入(t-distributed stochastic neighbor embedding,t-SNE)对26维溶解气体分析(DGA)数据进行非线性降维,引... 为解决电力变压器故障诊断中支持向量机(support vector machine,SVM)超参数优化和多分类性能不足的问题,采用t-分布的随机邻居嵌入(t-distributed stochastic neighbor embedding,t-SNE)对26维溶解气体分析(DGA)数据进行非线性降维,引入纠错输出码(error correction output codes,ECOC),将改进麻雀搜索算法(improved sparrow search algorithm,ISSA)与切比雪夫混沌映射、柯西-高斯变分策略相结合,优化SVM超参数,处理多分类问题。研究结果表明:ECOC-ISSA-SVM(t-SNE)模型的诊断精度、召回率、特异性和F1值分别为95.6%、97.8%、99.6%和97.8%,各项指标较传统模型提升效果显著,诊断时间缩短至11 ms,诊断效率显著提高。研究结论为电力设备智能运维提供技术支持。 展开更多
关键词 故障诊断 变压器 油中溶解气体 支持向量机 麻雀搜索算法 t-SNE降维 纠错输出码
在线阅读 下载PDF
基于KPCA-ISSA-SVM的控制图模式识别
2
作者 梁旭 张朝阳 +1 位作者 吉卫喜 张文博 《组合机床与自动化加工技术》 北大核心 2025年第7期128-134,140,共8页
针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)... 针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)复合映射和高斯变异来改进麻雀搜索算法对SVM的关键参数进行寻优;接着建立KPCA-ISSA-SVM模型对控制图模式进行识别;最后通过仿真实验,将所提模型与RF、CNN、SVM、KPCA-SVM、KPCA-SSA-SVM、KPCA-PSO-SVM模型进行对比,并以某电梯零部件企业的机加工车间为例,验证了该方法的可行性和有效性。仿真与实例结果表明,所提方法是一种更有效的控制图模式识别方法。 展开更多
关键词 控制图 模式识别 核主成分分析 改进麻雀搜索算法 支持向量机
在线阅读 下载PDF
特征降维下基于LSSA-SVM的转子系统故障诊断模型
3
作者 史宗帅 亚森江·加入拉 +1 位作者 崔鹏飞 靳鹏飞 《机电工程》 北大核心 2025年第3期463-471,500,共10页
针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,... 针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,采用小波分析技术对原始的转子振动信号进行了去噪处理,通过提取信号的时域特征以精确表征不同的转子故障状态,确保了该特征在噪声干扰下仍能清晰反映故障模式;然后,采用PCA对所提取的高维特征进行了降维处理,有效减少了冗余信息和噪声干扰,保留了最具代表性的关键特征,从而提高了特征提取的效率与诊断的可靠性;最后,设计了Levy飞行策略,对SSA进行了改进,得到了改进后的麻雀搜索算法(LSSA),以优化SVM的参数选择,进一步提升了分类器的泛化能力,利用改进的算法增强了该模型在复杂、有噪声环境下的诊断性能。研究结果表明:通过在多个含噪声的转子故障数据集上进行实验,该方法的故障诊断准确率达到了98.5%,相较于传统诊断方法,其具有更强的鲁棒性和较高的诊断精度,特别是在有噪环境中的优势更为明显。该方法有效解决了噪声干扰对故障诊断精度的影响问题,显著提高了转子故障诊断的准确性和稳定性,为实际工程中的转子故障诊断提供了一种有效的解决方案。 展开更多
关键词 轴承故障诊断 莱维飞行 改进的麻雀搜索算法 支持向量机 主成分分析 主成分分析特征降维 小波阈值函数去噪
在线阅读 下载PDF
基于SSA-SVM的巷道顶板空顶沉降量预测模型 被引量:4
4
作者 于冰冰 李清 +2 位作者 赵桐德 黄晨 高正华 《煤炭学报》 EI CAS CSCD 北大核心 2024年第S01期57-71,共15页
为解决煤矿深部井巷工程巷道掘进顶板空顶期沉降量的预测问题,引入人工智能的支持向量机(SVM)工具,结合麻雀搜索优化算法(SSA),提出基于SSA-SVM的巷道顶板空顶沉降量预测模型。以内蒙古长城五矿深部地下巷道掘进过程的顶板空顶期位移量... 为解决煤矿深部井巷工程巷道掘进顶板空顶期沉降量的预测问题,引入人工智能的支持向量机(SVM)工具,结合麻雀搜索优化算法(SSA),提出基于SSA-SVM的巷道顶板空顶沉降量预测模型。以内蒙古长城五矿深部地下巷道掘进过程的顶板空顶期位移量数据作为样本集合,选择单轴抗压强度(UCS)、岩石完整性(RQD)、地应力、巷道宽跨比、空顶时间、人为采动6项影响因素,通过适用性、相关性和归类一致性评价对数据的综合影响权重进行归纳整理。将十折交叉验证的准确率作为适应度函数,对不同种群数量的SSA-SVM预测模型展开训练和测试,通过误差相关系数(RMSE、MAPE、R^(2))、ROC曲线、AUC±Std、运行时间以及标准偏差率η等5方面来选择种群数量最优参数模型,并将该模型应用于1902S回风巷进行巷道掘进顶板空顶期的沉降量预测,同巷道实际矿压监测数据进行比较。研究结果表明:当种群数量为90时,SSA-SVM模型预测性能较好,训练样本的RMSE为0.0165,MAPE为22.54%,R^(2)为0.8295;测试样本的RMSE为0.0156,MAPE为22.37%,R^(2)为0.8490;真实度AUC达到最大0.8467,离散度Std最小为0.0115;运行时间最短为8.7239 s;标准偏差率维持在0.12%。在1902S回风巷现场应用中,预测值与实际值没有出现较大偏差,维持在线性拟合y=0.90x和y=1.10x范围内,误差相关系数与AUC±Std均符合试验精度要求,该模型的预测效果能够对后续的支护设计及补强支护作业提供重要的指导。 展开更多
关键词 空顶期 顶板沉降量 支持向量机 麻雀搜索算法 误差相关系数
在线阅读 下载PDF
基于MISSA-SVM模型的边坡稳定性预测及应用 被引量:3
5
作者 王团辉 王超 +2 位作者 吴顺川 王琦玮 徐健珲 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期135-144,共10页
为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型。选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6个代表性特征作为模型的预测指标。针... 为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型。选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6个代表性特征作为模型的预测指标。针对麻雀优化算法(SSA)存在的收敛速度慢、精确度不高、易陷入局部最优等问题,引入一维复合混沌映射、正余弦算法(SCA)、Levy飞行机制和步长因子动态调整等策略进行优化改进,构建基于MISSA-SVM的边坡稳定性预测模型。将MISSA-SVM模型应用到大溪滑坡等9组边坡工程实例进行验证。结果表明:MISSA-SVM模型的准确率、精确率、召回率、F_(1)分数、均方误差(MSE)和曲线下面积(AUC)分别达到96.29%、92.3%、100%、0.96、0.016和0.967,均优于SSA优化的SVM模型和BP模型,预测结果与实际边坡状况完全吻合,表明MISSA-SVM模型具有较强的泛化能力。 展开更多
关键词 多策略改进麻雀搜索算法(MISSA) 支持向量机(SVM) 边坡稳定性 正余弦算法(SCA) 预测指标
在线阅读 下载PDF
基于ISSA-SVM的钻井卡钻事故预测 被引量:3
6
作者 陈晓 张奇志 +2 位作者 王鑫 黄圣杰 陈浩宇 《科学技术与工程》 北大核心 2024年第8期3207-3214,共8页
为预防钻井过程中卡钻事故的发生,通过提出了一种改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量机(support vector machines,SVM)的预测模型方法(ISSA-SVM),在发现者位置更新公式中引入一种改进的自适应非线... 为预防钻井过程中卡钻事故的发生,通过提出了一种改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量机(support vector machines,SVM)的预测模型方法(ISSA-SVM),在发现者位置更新公式中引入一种改进的自适应非线性惯性递减权重;在警戒者位置更新公式中引入莱维飞行策略。利用主成分分析法(principal component analysis,PCA)对外国某大型油田的实测钻井数据进行降维处理,并利用惩罚参数和核参数进行卡钻事故的预测。实验结果表明:ISSA-SVM的预测准确率高达85.1852%,且收敛速度更快,可见ISSA-SVM可有效预测钻井卡钻事故。 展开更多
关键词 钻井 卡钻 麻雀搜索算法(SSA) 支持向量机(SVM) 主成分分析法(PCA)
在线阅读 下载PDF
基于SSA-SVM的航空电弧故障检测 被引量:7
7
作者 戴洪德 张志亮 +2 位作者 崔伟成 王艺卉 陈美男 《科学技术与工程》 北大核心 2024年第13期5626-5633,共8页
针对航空线路系统电弧故障隐蔽性高和难以检测的问题,提出一种基于麻雀搜索算法优化支持向量机(sparrow search algorithm optimization support vector machine,SSA-SVM)的航空电弧故障检测方法。首先采用小波分解对电弧故障电流数据... 针对航空线路系统电弧故障隐蔽性高和难以检测的问题,提出一种基于麻雀搜索算法优化支持向量机(sparrow search algorithm optimization support vector machine,SSA-SVM)的航空电弧故障检测方法。首先采用小波分解对电弧故障电流数据进行分解,小波分解能有效克服经验模态分解时存在的模态混叠问题。再从信号无序度的角度对电流分量提取能量熵、模糊熵与近似熵,并构造特征向量。然后,使用麻雀搜索算法对支持向量机的权值进行优化,得到最优的权值,最后用训练好的支持向量机对测试样本进行分类。为了验证所提方法的有效性,搭建电弧实验平台,模拟航空线路系统电弧故障的产生,分别采集交流串联正常和电弧故障电流数据,应用所提出的SSA-SVM算法进行电弧故障检测,结果表明,所提方法能较好地识别出电弧故障,检测准确率达到99.5%,相比于粒子群算法或遗传算法优化的支持向量机,对电弧故障的检测准确率分别高出2.5%和2%。 展开更多
关键词 电弧 故障检测 小波分析 支持向量机 麻雀搜索算法
在线阅读 下载PDF
一种基于KPCA-ISSA-SVM的火控计算机电源故障诊断方法 被引量:2
8
作者 高锦涛 李英顺 +1 位作者 郭占男 佟维妍 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期26-33,共8页
传统坦克故障诊断主要靠专家经验,投入人力大、花费时间长。为满足装甲装备的健康管理需求,提出了一种基于核主元分析和改进麻雀算法结合支持向量机的故障诊断方法。针对火控系统信号成分复杂、数据量少的问题,首先利用核主元分析降维... 传统坦克故障诊断主要靠专家经验,投入人力大、花费时间长。为满足装甲装备的健康管理需求,提出了一种基于核主元分析和改进麻雀算法结合支持向量机的故障诊断方法。针对火控系统信号成分复杂、数据量少的问题,首先利用核主元分析降维提取故障数据的非线性特征,减少其他冗余特征对故障识别的影响,降低数据维度。引入混沌Tent映射和非线性惯性权重因子对麻雀搜索算法进行改进,优化支持向量机核心参数并建立故障诊断模型,同时与粒子群优化和鲸鱼优化的支持向量机模型进行实验对比。实验证明:该方法可以有效对坦克火控系统进行故障诊断,且在准确率和诊断效率方面性能较高。 展开更多
关键词 故障诊断 火控系统 支持向量机 核主元分析 麻雀搜索算法
在线阅读 下载PDF
基于三维荧光光谱和ISSA-SVM的食用植物油鉴别 被引量:1
9
作者 张静 齐国红 +2 位作者 陈景召 曹晓丽 李莉莉 《食品与机械》 CSCD 北大核心 2024年第10期53-61,共9页
[目的]提高食用植物油的分类精度,建立基于三维荧光光谱和ISSA-SVM的食用植物油鉴别模型。[方法]结合三维荧光光谱特征信息,运用改进的麻雀搜索算法优化SVM模型参数,构建一个融合三维荧光光谱信息特征和ISSA-SVM模型的食用植物油鉴别方... [目的]提高食用植物油的分类精度,建立基于三维荧光光谱和ISSA-SVM的食用植物油鉴别模型。[方法]结合三维荧光光谱特征信息,运用改进的麻雀搜索算法优化SVM模型参数,构建一个融合三维荧光光谱信息特征和ISSA-SVM模型的食用植物油鉴别方法。[结果]与SVM模型、GA-SVM模型、PSO-GA模型和SSA-SVM模型相比,ISSA-SVM模型的食用植物油分类精度最高,为100%。[结论]ISSA-SVM模型具有更高的收敛效率、系统稳定性以及避免局部最优解的能力,可以有效应对复杂多变的样本分类任务。 展开更多
关键词 支持向量机 麻雀搜索算法 三维荧光光谱 食用植物油
在线阅读 下载PDF
基于RCMFFDE和SSA-RVM的旋转机械损伤检测模型 被引量:1
10
作者 王显彬 孙阳 《机电工程》 北大核心 2025年第3期510-519,共10页
针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机... 针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机械损伤检测模型。首先,进行了基于RCMFFDE方法的特征提取,生成了特征样本,以定量反映旋转机械的不同损伤情况;然后,采用t-SNE方法,将原始高维故障特征映射至低维空间,获得了对故障更敏感的低维特征;最后,将敏感的低维故障特征向量输入至SSA-RVM多分类器中,进行了训练和测试,实现了旋转机械样本的故障识别目的;采用两种旋转机械数据集进行了实验,并从准确率、效率和抗噪性方面,将RCMFFDE-SSA-SVM方法与多种特征提取方法进行了对比。研究结果表明:RCMFFDE能用于有效提取旋转机械的故障特征,分别取得99.2%和100%的识别精度;而对敏感特征进行分类所获得的精度优于对原始特征进行分类的情形,前者比后者提高了4%;在模式识别中,SSA-RVM优于其他分类器;自制数据集的诊断精度达到了97%,特征提取的时间为16.05 s。 展开更多
关键词 非线性振动信号 特征提取时间 故障识别精度(诊断精度) 精细复合多尺度分数波动散布熵 t-分布随机邻域嵌入 麻雀搜索算法优化相关向量机
在线阅读 下载PDF
基于麻雀算法优化支持向量机的阀门内漏诊断研究 被引量:2
11
作者 龚家乐 曹丽华 +1 位作者 李大才 司和勇 《汽轮机技术》 北大核心 2025年第2期110-112,126,共4页
由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断... 由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断性能上与标准SVM模型进行对比分析。结果表明:在诊断过程中,SSA-SVM阀门内漏诊断模型能够适时调整模型参数,并保持较高的诊断性能,多个泄漏诊断指标均优于标准模型。当泄漏诊断准确率优先级高于诊断时间时,SSA-SVM诊断模型拥有更好的阀门泄漏诊断能力。 展开更多
关键词 阀门泄漏 支持向量机 麻雀优化算法 故障诊断
在线阅读 下载PDF
基于VMD-MSE与SSA-SVM的往复式压缩机气阀故障诊断 被引量:16
12
作者 别锋锋 朱鸿飞 +1 位作者 彭剑 张莹 《振动与冲击》 EI CSCD 北大核心 2022年第19期289-295,共7页
往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提... 往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提取方法,并与采用麻雀寻优算法(soarrow search algorithm,SSA)优化的支持向量机(suppot vector mackine,SVM)相结合,用于往复压缩机气阀故障诊断;通过对往复压缩机气阀信号进行VMD分解,选取合适的内禀模态分量(intrinsic mode function,IMF)进行信号重构,基于MSE熵值分析构成特征向量集,最后将其输入SSA-SVM训练并识别故障类型。试验结果表明,基于VMD-MSE与SSA-SVM的故障诊断模型能有效并准确的识别往复压缩机气阀故障。 展开更多
关键词 往复压缩机 变分模态分解 多尺度样本熵 支持向量机 模式识别
在线阅读 下载PDF
基于透射光谱技术的种蛋受精无损检测研究
13
作者 刘云飞 张晓雨 +3 位作者 籍颖 周荣艳 陈辉 韩晓飞 《中国家禽》 北大核心 2025年第6期153-161,共9页
为了提高在鸡种蛋孵化早期(0~5胚龄)筛除无精蛋的准确率,试验采用透射光谱技术结合智能算法与机器学习模型进行种蛋受精信息识别。试验对采集获得的透射光谱数据进行预处理,剔除壳色波段影响,建立支持向量机(Support vector machine,SVM... 为了提高在鸡种蛋孵化早期(0~5胚龄)筛除无精蛋的准确率,试验采用透射光谱技术结合智能算法与机器学习模型进行种蛋受精信息识别。试验对采集获得的透射光谱数据进行预处理,剔除壳色波段影响,建立支持向量机(Support vector machine,SVM)种蛋受精检测模型。分别使用灰狼优化算法(Grey wolf optimizer,GWO)和麻雀搜索算法(Sparrow search algorithm,SSA)对SVM模型的c和g参数进行优化,优化后模型进行对比;采用Sine混沌映射和萤火虫扰动优化麻雀搜索算法,构建改进SSA-SVM模型。结果显示:SSA-SVM模型对孵化早期测试集预测受精准确率在孵化第4、5天最高,达99.56%;改进后的SSA-SVM模型对入孵前第0天测试集预测受精准确率达99.12%。研究表明使用改进后的SVM模型能够提高种蛋受精判别准确率,可以为生产提供参考。 展开更多
关键词 种鸡蛋 透射光谱 无损检测 支持向量机 麻雀搜索算法 灰狼优化算法
在线阅读 下载PDF
基于SSA-SVM的海杂波背景下小信号检测方法 被引量:12
14
作者 王海峰 行鸿彦 +1 位作者 陈梦 陈子正 《电子测量与仪器学报》 CSCD 北大核心 2022年第4期24-31,共8页
针对传统检测方法不能有效地从强混沌背景噪声中检测出小信号,本文研究了强杂波背景下小目标检测原理,提出了一种基于SSA-SVM的混沌小信号检测方法。利用麻雀搜索算法优化SVM惩罚参数C与核函数参数σ提高预测准确性,从而降低检测门限,... 针对传统检测方法不能有效地从强混沌背景噪声中检测出小信号,本文研究了强杂波背景下小目标检测原理,提出了一种基于SSA-SVM的混沌小信号检测方法。利用麻雀搜索算法优化SVM惩罚参数C与核函数参数σ提高预测准确性,从而降低检测门限,提高检测率。在Lorenz混沌系统中加入目标信号进行仿真,结果表明:提出的方法能有效地从强混沌背景噪声中检测出小信号,瞬态小信号预测的均方根误差为0.0004343(信噪比为-137.7073 dB),比传统SVM算法预测信号的均方根误差0.049(信噪比为-54.60 dB)降低了两个数量级。利用IPIX雷达实测海杂波数据,对所提方法进行实验验证,进一步说明了该方法的有效性。 展开更多
关键词 微弱信号检测 支持向量机 麻雀搜索算法 海杂波
在线阅读 下载PDF
基于CHMM和SSA-SVM模型的高速铁路道岔设备健康状态评估方法 被引量:7
15
作者 王彦快 米根锁 +2 位作者 张玉 王宇峰 王朋雨 《铁道学报》 EI CAS CSCD 北大核心 2023年第11期107-116,共10页
为更加精准地评估道岔设备健康状态,加强对设备的维护与管理,以ZDJ9型转辙机驱动的高速铁路道岔设备为研究对象,提取道岔功率曲线的时域、频域特征指标及经验模态分解奇异值熵,组成道岔特征指标向量,并采用核主成分分析法消除原始多维... 为更加精准地评估道岔设备健康状态,加强对设备的维护与管理,以ZDJ9型转辙机驱动的高速铁路道岔设备为研究对象,提取道岔功率曲线的时域、频域特征指标及经验模态分解奇异值熵,组成道岔特征指标向量,并采用核主成分分析法消除原始多维特征信息的冗余,构建道岔特征指标样本数据库;利用连续隐马尔可夫模型划分道岔退化状态,在此基础上,建立麻雀搜索算法优化支持向量机的健康状态综合评估模型。研究结果表明:所构建的健康状态评估模型的评估正确率高达98.75%,不仅能够实现高铁道岔设备健康状态综合评估效能,而且明显优于GridSearch-SVM、GA-SVM、PSO-SVM等组合算法,为实现道岔设备由“故障修”到“状态修”的综合智能维护提供可行途径。 展开更多
关键词 高铁道岔设备 健康状态评估 连续隐马尔可夫模型 麻雀搜索算法优化支持向量机 核主成分分析
在线阅读 下载PDF
基于SSA—SVM算法的成熟黄花菜图像分割
16
作者 姚涛 谈志鹏 +2 位作者 程娥 武晔秋 吴利刚 《中国农机化学报》 北大核心 2025年第6期85-90,共6页
自然环境下,由于光照不均,黄花菜与茎叶、土壤等背景对比度低,图像分割准确率低、定位困难,基于此,提出一种基于麻雀搜索算法(SSA)融合支持向量机(SVM)的成熟黄花菜图像分割方法。首先,采用RGB、HSV颜色模型构造样本特征数据集,对成熟... 自然环境下,由于光照不均,黄花菜与茎叶、土壤等背景对比度低,图像分割准确率低、定位困难,基于此,提出一种基于麻雀搜索算法(SSA)融合支持向量机(SVM)的成熟黄花菜图像分割方法。首先,采用RGB、HSV颜色模型构造样本特征数据集,对成熟黄花菜分割模型进行训练。其次,基于SSA优化SVM中的高斯径向基核函数参数和惩罚项系数,获得最优分类模型,经过二值化、形态学开运算及填充孔洞、去除噪声等图像形态学操作,完成图像分割。最后,针对光照较弱的黄花菜图像欠分割状况,对分类结果实施HSV模型阈值分割操作。试验结果表明:基于SSA—SVM算法的图像分割方法平均分割精度达到97.057%,处理时间为1.822s。 展开更多
关键词 黄花菜 麻雀搜索法 支持向量机 图像分割 颜色模型
在线阅读 下载PDF
基于FASSA-SVM的充电桩故障预测算法研究 被引量:10
17
作者 张梅 高犁 陈万利 《电子测量技术》 北大核心 2022年第12期48-53,共6页
为了电动汽车直流充电桩的安全稳定运行,提出一种基于改进支持向量机的充电桩故障预测算法。该算法首先针对充电桩的运行参数进行缺失值填充、归一化等预处理;然后将预处理后的数据输入支持向量机模型训练,之后引入萤火虫算法改进麻雀... 为了电动汽车直流充电桩的安全稳定运行,提出一种基于改进支持向量机的充电桩故障预测算法。该算法首先针对充电桩的运行参数进行缺失值填充、归一化等预处理;然后将预处理后的数据输入支持向量机模型训练,之后引入萤火虫算法改进麻雀算法对支持向量机模型进行参数寻优,得到最优模型;最后利用得到的最优模型预测诊断充电桩运行状态,来判断充电桩是否发生故障。实验结果表明,本文的预测算法预测精度可达94.68%,远高于传统的支持向量机模型的72.34%,能较准确地预测充电桩运行状态,为其预知维修、保障安全运行提供有力保障。 展开更多
关键词 充电桩 故障预测 支持向量机 麻雀搜索算法 萤火虫算法
在线阅读 下载PDF
基于SSA—SVR模型的步进式加热炉炉温预测
18
作者 牛佳丽 刘丕亮 +1 位作者 崔桂梅 任春妮 《中国测试》 北大核心 2025年第7期64-71,共8页
加热炉炉温的预测和温度控制,对提高钢坯质量、节能降耗具有重大意义。针对加热炉炉温预测精度低等问题,从数据驱动角度出发,提出一种基于麻雀搜索算法(SSA)与支持向量机回归(SVR)相结合的炉温预测模型(SSA-SVR)。通过将该预测模型与其... 加热炉炉温的预测和温度控制,对提高钢坯质量、节能降耗具有重大意义。针对加热炉炉温预测精度低等问题,从数据驱动角度出发,提出一种基于麻雀搜索算法(SSA)与支持向量机回归(SVR)相结合的炉温预测模型(SSA-SVR)。通过将该预测模型与其他5个预测模型进行对比,结果表明SSA-SVR模型的均方误差(MSE)指标最小、拟合优度(r^(2))最高,且相较于SVR模型的精度有了显著提高,均方误差指标明显得到降低,拟合优度提高0.0283。可为提高加热炉炉温温度控制精度提供有力支持,为钢坯轧制提供较为可靠的依据。 展开更多
关键词 加热炉 麻雀搜索优化算法 支持向量机 炉温预测
在线阅读 下载PDF
改进变分模态分解和LSSVM的用户电力负荷预测
19
作者 解世璇 刘立群 吴青峰 《现代电子技术》 北大核心 2025年第20期127-134,共8页
为提升电力系统短期负荷预测的准确率,保证日常电力系统的正常运行,提出一种基于WOA-VMD-SSA-LSSVM的短期电力负荷预测模型。首先,使用鲸鱼优化算法(WOA)对变分模态分解(VMD)的核心参数(k值和惩罚系数α)进行自动寻优,得到最佳效果的分... 为提升电力系统短期负荷预测的准确率,保证日常电力系统的正常运行,提出一种基于WOA-VMD-SSA-LSSVM的短期电力负荷预测模型。首先,使用鲸鱼优化算法(WOA)对变分模态分解(VMD)的核心参数(k值和惩罚系数α)进行自动寻优,得到最佳效果的分解子序列,减少不同趋势信息对预测精度的影响,并利用优化后的VMD对数据进行分解;然后,使用麻雀搜索算法(SSA)改进最小二乘支持向量机(LSSVM)的模型学习参数,对惩罚系数和核函数进行参数寻优,避免了单一预测变量精度不高的问题,进而建立预测模型,获得更为精确的预测结果;最后,将分解后的各组数据分别输入模型中,并将每个子序列的预测结果相加得到最终预测结果。实验结果表明,与PSO、GWO和SABO算法的建模结果相比,所提模型具有更高的预测精度且耗时较短,在一定程度上可为负荷管理、电力优化调度提供科学决策依据。 展开更多
关键词 预测模型分析 鲸鱼优化算法 麻雀搜索算法 变分模态分解 最小二乘支持向量机 数据预处理 时间序列预测
在线阅读 下载PDF
基于集成CSSOA-SVM的原油近红外光谱分析系统故障诊断方法
20
作者 刘克淳 陈夕松 胡云云 《石油炼制与化工》 北大核心 2025年第7期147-152,共6页
为解决原油近红外(NIR)光谱分析系统在故障诊断中存在的高维特征、易陷入局部最优解和诊断精准度不足等问题,提出了一种基于集成混沌麻雀搜索优化算法(CSSOA)优化支持向量机(SVM)模型参数寻优过程的CSSOA-SVM故障诊断方法,其克服SVM诊... 为解决原油近红外(NIR)光谱分析系统在故障诊断中存在的高维特征、易陷入局部最优解和诊断精准度不足等问题,提出了一种基于集成混沌麻雀搜索优化算法(CSSOA)优化支持向量机(SVM)模型参数寻优过程的CSSOA-SVM故障诊断方法,其克服SVM诊断精度较差、传统麻雀搜索算法(SSA)易陷入局部最优的不足,而提升了收敛速率和分类能力;进而,结合AdaBoost学习框架集成多个CSSOA-SVM基分类模型,通过动态调整样本和基分类模型权重增强了模型对复杂故障模式的识别能力和模型稳定性。结果表明,集成CSSOA-SVM分类诊断模型对6种常见故障的诊断准确率达95.48%,相较传统方法在诊断准确率、模拟收敛速率和模型稳健性方面优势显著,为原油NIR光谱分析系统的故障诊断提供了有效解决方案。 展开更多
关键词 原油近红外光谱分析系统 故障诊断 混沌麻雀搜索优化算法 支持向量机优化 集成学习
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部