期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
1
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于改进麻雀搜索算法优化核极限学习机的弹丸气动参数辨识 被引量:1
2
作者 高展鹏 易文俊 《电子测量与仪器学报》 北大核心 2025年第2期72-82,共11页
弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组... 弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组合模型来辨识弹丸的气动参数,为充分挖掘SSA算法性能,提高辨识精确度,将对SSA算法的初始化策略、收敛因子和加入者的位置更新策略进行改进,采用CEC2022测试函数对改进后的麻雀搜索算法(ISSA)的改进措施的有效性进行验证,并采用ISSA优化KELM的核参数和正则化系数,提出ISSA-KELM辨识模型。研究结果表明,直接采用极限学习机(ELM)算法的辨识精确度最低,无法描述非线性区域弹丸的气动参数特征,通过在ELM算法中引入核函数提出KELM方法可以将辨识精确度提高1~4个量级,KELM和SSA-KELM等模型在非线性区域的辨识结果与真实值还有一定的差距,而采用ISSA-KELM模型的辨识结果最为精确,相比较基本的ELM算法辨识结果提高约4~5个量级,可以准确获取弹丸的气动参数,本研究为精确飞行轨迹预测和导弹性能优化提供了可靠的技术支持。 展开更多
关键词 弹丸 麻雀搜索算法 核极限学习机 气动参数辨识 非线性
在线阅读 下载PDF
基于麻雀搜索算法优化的深度极限学习向量机和感知阵列的毒害气体泄露检测方法研究
3
作者 董华青 汤旭翔 孟实 《传感技术学报》 北大核心 2025年第5期937-942,共6页
实验室是高校师生从事实践活动的重要场所,近年来高校实验室安全事故频发,因此实验室安全问题至关重要。将多个气体传感器构建的感知阵列布置在实验室中,获取环境中气体检测信息。并采用非线性方法实现对感知信号的预调理,并采用支持向... 实验室是高校师生从事实践活动的重要场所,近年来高校实验室安全事故频发,因此实验室安全问题至关重要。将多个气体传感器构建的感知阵列布置在实验室中,获取环境中气体检测信息。并采用非线性方法实现对感知信号的预调理,并采用支持向量机(SVM)算法、相关向量机(RVM)算法、K-近邻(KNN)算法、深度极限学习向量机(DELM)、麻雀搜索算法优化的深度极限学习向量机(SSA-DELM)算法建立四种不同的实验室气体泄露分类模型。研究结果证明麻雀搜索算法优化的深度极限学习向量机(SSA-DELM)算法损伤检测准确率为95%,针对实验室毒害气体泄露的预报率最高。所提出的方法具有较好的预报精度,为实验室毒害气体泄露检测提供一种新思路。 展开更多
关键词 毒害气体 实验室 感知阵列 深度极限学习 麻雀搜索算法
在线阅读 下载PDF
基于SSA-KELM的输变电工程水土流失量预测研究
4
作者 雷磊 呼梦颖 +3 位作者 董子晗 师一卿 万昊 王良 《电测与仪表》 北大核心 2025年第8期189-196,共8页
针对输变电工程中水土流失量在线监测刚起步导致智能预测预警困难的问题,文中提出一种基于麻雀搜索算法和核极限学习机的输变电工程水土流失量智能预测方法。利用麻雀搜索算法(sparrow search algorithm,SSA)优化核极限学习机(kernel-ba... 针对输变电工程中水土流失量在线监测刚起步导致智能预测预警困难的问题,文中提出一种基于麻雀搜索算法和核极限学习机的输变电工程水土流失量智能预测方法。利用麻雀搜索算法(sparrow search algorithm,SSA)优化核极限学习机(kernel-based extreme learning machine,KELM)的正则化系数和核函数参数,以降雨量环境因子作为样本输入,构建SSA-KELM水土流失量预测模型。利用该预测模型对某变电站水土流失情况进行预测,并与核极限学习机和支持向量机预测方法对比。利用自主研发的现场监测系统获取水土保持监测数据,对所提预测算法进行长期测试,结果表明,基于SSA-KELM的水土流失量预测是有效的,而且比当前其他方法的预测精度更高。 展开更多
关键词 水土流失量 麻雀搜索算法 核极限学习机
在线阅读 下载PDF
基于多域信息融合与改进ELM的船舶电机轴承故障诊断
5
作者 戈淳 闫灶宇 +1 位作者 商嘉桐 薛红涛 《中国舰船研究》 北大核心 2025年第2期68-76,共9页
[目的]针对监测信号在单一分析域内的特征参数难以完整表征监测对象的运行状态,以及极限学习机(ELM)网络的模型参数难以达到最优的问题,提出一种基于多域信息融合与改进ELM的船舶电机轴承故障诊断方法。[方法]首先,基于船舶电机轴承振... [目的]针对监测信号在单一分析域内的特征参数难以完整表征监测对象的运行状态,以及极限学习机(ELM)网络的模型参数难以达到最优的问题,提出一种基于多域信息融合与改进ELM的船舶电机轴承故障诊断方法。[方法]首先,基于船舶电机轴承振动信号在时域、频域与时频域内的特征信息,构建多域特征参数集,作为故障诊断模型的输入;然后,运用麻雀搜索算法改进ELM网络的模型参数优化方法,确定最优的权值与阈值,进而提高故障诊断ELM模型的识别精度。最后,通过船用电机试验台架实验数据和开源实验数据,对电机轴承故障状态进行识别。[结果]基于船用电机试验台架的实验数据验证表明,采用多域特征参数集的故障诊断模型在训练集和测试集上的识别精度均为100%;基于开源实验数据验证表明,改进ELM模型的测试集识别精度为90.5%,相较于原始ELM模型提高了12.7%,且训练集识别精度与测试集识别精度均高于其他诊断模型。[结论]所提方法在输入特征参数集与诊断模型上均有改进,可有效识别电机轴承故障状态,且模型具有良好的稳定性,为船舶电机轴承故障诊断提供参考。 展开更多
关键词 电动机 轴承 故障分析 故障诊断 多域信息融合 麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于集成CSSOA-SVM的原油近红外光谱分析系统故障诊断方法
6
作者 刘克淳 陈夕松 胡云云 《石油炼制与化工》 北大核心 2025年第7期147-152,共6页
为解决原油近红外(NIR)光谱分析系统在故障诊断中存在的高维特征、易陷入局部最优解和诊断精准度不足等问题,提出了一种基于集成混沌麻雀搜索优化算法(CSSOA)优化支持向量机(SVM)模型参数寻优过程的CSSOA-SVM故障诊断方法,其克服SVM诊... 为解决原油近红外(NIR)光谱分析系统在故障诊断中存在的高维特征、易陷入局部最优解和诊断精准度不足等问题,提出了一种基于集成混沌麻雀搜索优化算法(CSSOA)优化支持向量机(SVM)模型参数寻优过程的CSSOA-SVM故障诊断方法,其克服SVM诊断精度较差、传统麻雀搜索算法(SSA)易陷入局部最优的不足,而提升了收敛速率和分类能力;进而,结合AdaBoost学习框架集成多个CSSOA-SVM基分类模型,通过动态调整样本和基分类模型权重增强了模型对复杂故障模式的识别能力和模型稳定性。结果表明,集成CSSOA-SVM分类诊断模型对6种常见故障的诊断准确率达95.48%,相较传统方法在诊断准确率、模拟收敛速率和模型稳健性方面优势显著,为原油NIR光谱分析系统的故障诊断提供了有效解决方案。 展开更多
关键词 原油近红外光谱分析系统 故障诊断 混沌麻雀搜索优化算法 支持向量机优化 集成学习
在线阅读 下载PDF
基于AMSD-WTSSA-DELM模型的铁路沿线短期风速预测方法
7
作者 尼比江·艾力 张林鍹 +5 位作者 李奕超 景雨啸 高金山 王渊 谢明浩 罗晓龙 《铁道科学与工程学报》 北大核心 2025年第2期543-556,共14页
我国西北地区铁路沿线风速较强且存在非平稳性和波动性,导致风速预测精确度不高、模型泛化性差。基于此,提出一种基于AMSD-WTSSA-DELM的组合预测模型。首先,利用高度非平稳的原始风速序列、分量的长期相关表现、分量所包含的潜在模式及... 我国西北地区铁路沿线风速较强且存在非平稳性和波动性,导致风速预测精确度不高、模型泛化性差。基于此,提出一种基于AMSD-WTSSA-DELM的组合预测模型。首先,利用高度非平稳的原始风速序列、分量的长期相关表现、分量所包含的潜在模式及趋势和周期性等内在信息,进行每步分解处理,分别建立分解条件以及自适应更新阈值;为避免过度分解加入自适应重构方法,分解至无高复杂度分量为止,从而实现适应性较强的自适应多步分解。其次,提出WTSSA算法,即通过在麻雀搜索算法(SSA)中融入混沌映射、自适应权重和自适应t分布扰动策略,提升SSA全局搜索和局部探索能力,加快收敛速度,并通过测试函数验证WTSSA算法的卓越性。然后针对AMSD输出的各分量,分别建立由WTSSA优化权重和偏置的深度极限学习机(DELM)模型。最后汇总所有分量的预测数据,合成最终的预测输出。实验结果表明:模型在2组实际铁路沿线风速数据预测性能上提升效果明显,以第1组实验数据为例,本文方法与DELM相比,平均绝对误差(E_(mae))和均方根误差(E_(rmse))分别降低90.32%和82.25%,决定系数(R^(2))提升43.00%。综上所述,研究成果有效克服了风速的非线性特征导致的时迟问题,具有高泛化性能,能够预测短期风速变化,从而帮助铁路系统做出更有效的安全决策,为列车安全运行提供有力的技术支撑。 展开更多
关键词 短期风速预测 自适应多步分解 深度极限学习机 改进麻雀搜索算法 铁路沿线风速
在线阅读 下载PDF
多策略改进SSA优化KELM的边坡稳定性预测模型
8
作者 祁云 薛凯隆 +3 位作者 李绪萍 汪伟 白晨浩 吉准泽 《中国安全科学学报》 北大核心 2025年第3期92-98,共7页
为了能够更加精准地预测边坡稳定状态,从而有效预防边坡失稳事故,提出改进麻雀搜索算法(ISSA)与核极限学习机(KELM)相结合的ISSA-KELM边坡稳定性预测模型。首先,将边坡失稳特征中的容重、黏聚力等6个主要影响因素作为预测指标,建立边坡... 为了能够更加精准地预测边坡稳定状态,从而有效预防边坡失稳事故,提出改进麻雀搜索算法(ISSA)与核极限学习机(KELM)相结合的ISSA-KELM边坡稳定性预测模型。首先,将边坡失稳特征中的容重、黏聚力等6个主要影响因素作为预测指标,建立边坡稳定性评价数据集;其次,引入Sine混沌映射、Levy飞行策略、动态自适应权重以及融合最优爆炸策略和反向学习改进麻雀搜索算法(SSA),以提高其全局搜索能力和稳定性;而后利用ISSA优化KELM中的核参数ψ和正则化系数C,提升其预测精度,同时避免KELM出现过拟合现象;最后,对比分析ISSA-KELM模型与SSA-KELM、粒子群优化算法(PSO)-KELM以及PSO-支持向量机(SVM)模型的预测结果,并将ISSA-KELM模型应用于山西某露天煤矿。结果表明:ISSA-KELM模型的准确率、精确率、召回率和F 1分数分别达到了0.9459、1、0.8667和0.929,均优于SSA-KELM、PSO-KELM和PSO-SVM模型,模型的预测结果与实际值最为接近,表明所建ISSA-KELM模型具有较强的泛化能力。 展开更多
关键词 边坡稳定性 预测模型 改进麻雀搜索算法(ISSA) 核极限学习机(KELM) 预测指标 混淆矩阵
在线阅读 下载PDF
基于VIKOR-SSA-ELM的山区隧道结构安全评价方法
9
作者 王芝茏 杨文波 +3 位作者 寇昊 赵亮亮 曾泽润 吴枋胤 《隧道建设(中英文)》 北大核心 2025年第S1期136-145,共10页
为掌握隧道结构在山区环境中的安全状态,提出一种基于多准则妥协解排序法(VIKOR)决策模型和麻雀搜索算法(SSA)优化极限学习机(ELM)算法的山区隧道结构安全评价方法。通过调研山区隧道结构安全影响因素的文献,建立山区隧道结构安全的评... 为掌握隧道结构在山区环境中的安全状态,提出一种基于多准则妥协解排序法(VIKOR)决策模型和麻雀搜索算法(SSA)优化极限学习机(ELM)算法的山区隧道结构安全评价方法。通过调研山区隧道结构安全影响因素的文献,建立山区隧道结构安全的评语集、指标体系与指标基准;利用群体决策层次分析法(AHP)、熵权法(EWM)+CRITIC法和博弈论对评价指标进行权重计算;采用VIKOR决策模型对隧道结构安全等级进行量化,并将使用MATLAB生成的构造样本转化为用于机器学习训练的训练样本;根据参数寻优的结果,构建SSA-ELM模型,并收集48个已进行现场勘察并确定安全等级的工程实例样本进行安全预测,同时与未优化的ELM和运用粒子群算法(PSO)优化的ELM模型进行对比分析。结果表明,SSA-ELM模型的预测准确率更高。 展开更多
关键词 山区隧道 隧道结构安全评价 博弈论 多准则妥协解排序法 麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于FSSA-ELM的模拟电路故障诊断方法 被引量:3
10
作者 陈晓娟 刘禹盟 +1 位作者 曲畅 张昭华 《半导体技术》 北大核心 2024年第1期77-84,共8页
在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电... 在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电路故障数据进行特征提取,通过分数阶与麻雀搜索算法(SSA)相融合,对极限学习机(ELM)的权重和阈值进行寻优,将提取后的特征数据输入到FSSA-ELM模型中进行训练和测试。T型反馈网络反相比例运算电路诊断实例表明,FSSA-ELM的故障诊断用时相较于SSA-ELM缩短了891 s,单故障诊断准确率可达972%,比SSA-ELM和ELM分别提高了19%和28%;双故障诊断准确率可达95%,分别提高了04%和10%。该故障诊断方法准确率高、耗时短,具有较强的模拟电路故障检测能力。 展开更多
关键词 模拟电路 故障诊断 分数维度 麻雀搜索算法(SSA) 极限学习机(ELM)
在线阅读 下载PDF
基于SSA-ELM神经网络控制器的光伏MPPT方法 被引量:3
11
作者 李文娟 徐伟健 +1 位作者 肖瀚 梁树威 《实验技术与管理》 CAS 北大核心 2024年第1期158-164,共7页
光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该... 光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。 展开更多
关键词 光伏电池 最大功率点跟踪 麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于ARO-MKELM的微电网攻击检测 被引量:1
12
作者 吴忠强 张伟一 《计量学报》 CSCD 北大核心 2024年第10期1444-1452,共9页
智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人... 智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人工兔群优化算法优化多核极限学习机的交流微电网虚假数据注入攻击检测方法。在传统极限学习机中引入组合核函数以提升检测模型的学习能力和泛化能力,并采用具有强全局搜索能力的人工兔群优化算法优化多核极限学习机的核函数参数及正则化系数,进一步提升检测模型的检测精度。利用非训练样本内幅值为55和95的阶跃攻击信号进行仿真验证,检测准确率范围分别达到了(93.44~94.64)%和(98.11~99.23)%,与其他检测模型进行对比分析,验证了所提方法的优越性。 展开更多
关键词 电学计量 交流微电网 虚假数据注入 人工兔群优化算法 多核极限学习机
在线阅读 下载PDF
甘蔗收获机根部切割系统负载压力预测模型研究
13
作者 麻芳兰 罗一鸣 +3 位作者 李嘉诚 苗金泽 叶凤滋 陈彬 《农业机械学报》 CSCD 北大核心 2024年第12期81-89,共9页
为了提高甘蔗收获机切割深度控制系统的适用范围和准确度,针对当前参考压力设定无法根据土壤参数和机车参数自动调整的问题,建立了负载压力预测模型。通过正交试验方法对负载压力与入土切割深度、喂入量、土壤含水率、土壤坚实度之间的... 为了提高甘蔗收获机切割深度控制系统的适用范围和准确度,针对当前参考压力设定无法根据土壤参数和机车参数自动调整的问题,建立了负载压力预测模型。通过正交试验方法对负载压力与入土切割深度、喂入量、土壤含水率、土壤坚实度之间的关系进行了数据采集,并将试验数据作为负载压力预测模型的训练样本和测试样本。根据训练样本建立极限学习机(ELM)和基于麻雀搜索算法优化的极限学习机(SSA-ELM)负载压力预测模型,并通过测试样本对预测模型进行性能评价。结果表明,与ELM模型相比,SSA-ELM预测模型平均绝对误差、平均相对误差和均方根误差在黄壤条件下降低50.00%、44.14%和44.44%,在红壤条件下降低58.33%、56.98%和57.14%。为了检验负载压力预测模型在实际收获过程中的适用性,在试验平台上模拟蔗地遇到的各种工况,将预测模型应用于现有控制系统进行试验。结果表明,当入土切割深度为20 mm、作业速度为0.34 m/s、刀盘转速为700 r/min时,预测模型满足参考压力的设定要求,且切割深度与目标深度最大误差不大于5 mm,满足甘蔗收获生产的实际要求。 展开更多
关键词 甘蔗收获机 入土切割 负载压力 极限学习机 麻雀搜索算法 预测模型
在线阅读 下载PDF
基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断
14
作者 戚晓利 王兆俊 +3 位作者 毛俊懿 王志文 崔德海 赵方祥 《振动与冲击》 EI CSCD 北大核心 2024年第11期165-175,共11页
针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合... 针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合了通道和空间特征的注意力机制CSAM与组卷积残差模块结合,提升该结构的表征能力,由此构建的RegNet-CSAM网络,模型复杂度为0.48GF;其次,在分类阶段将斑马优化核极限学习机(ZOA-KELM)替代原来网络中使用的Softmax函数完成最后的分类任务。滚动轴承故障诊断试验结果表明,RegNet网络对滚动轴承混合故障样本容易产生误判,CSAM的融入虽将RegNet网络的分类精度进一步提高,但是仍然存在一定程度的滚动轴承混合故障误判问题;而将ZOA-KELM替代Softmax函数后再对RegNet-CSAM网络输出特征进行分类,能够有效识别出滚动轴承的单一和混合故障,准确率达到了99.92%。所提方法对比其他网络,诊断精度最大提升5.02%,模型复杂度最大缩减32倍。 展开更多
关键词 故障诊断 滚动轴承 组卷积残差结构 注意力机制 斑马优化核极限学习机(ZOA-KELM)
在线阅读 下载PDF
基于SSA-ELM算法的基坑地表沉降预测 被引量:6
15
作者 刘银涛 任超 《桂林理工大学学报》 CAS 北大核心 2024年第3期471-475,共5页
针对传统的极限学习机算法(ELM)在进行深基坑的地表沉降预测时易陷入局部极小、网络结构中参数选取不准确及预测精度不佳等问题,提出了一种基于麻雀搜索算法(SSA)优化极限学习机算法的基坑地表沉降预测模型。根据麻雀搜索算法收敛速度... 针对传统的极限学习机算法(ELM)在进行深基坑的地表沉降预测时易陷入局部极小、网络结构中参数选取不准确及预测精度不佳等问题,提出了一种基于麻雀搜索算法(SSA)优化极限学习机算法的基坑地表沉降预测模型。根据麻雀搜索算法收敛速度快、寻优能力与稳定性较强等特点,对极限学习机算法中的连接权值与阈值进行优化,并将优化后的模型应用于基坑的地表沉降预测。将麻雀搜索算法优化后的极限学习机算法(SSA-ELM)与ELM、 GA-ELM、 PSO-ELM算法进行预测精度对比,结果表明:SSA-ELM算法的预测精度高于ELM、 GA-ELM、 PSO-ELM算法,且其稳定性更强,在基坑的地表沉降预测方面效果更好,实现了提高预测精度的目的,具有一定的可行性和实用性。 展开更多
关键词 极限学习机 麻雀搜索算法 优化 沉降预测 基坑
在线阅读 下载PDF
基于相似日聚类和PCC-VMD-SSA-KELM模型的短期光伏功率预测 被引量:9
16
作者 李争 张杰 +3 位作者 徐若思 罗晓瑞 梅春晓 孙鹤旭 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期460-468,共9页
由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输... 由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输入;K-均值算法进行相似日聚类,将历史数据聚类为晴天、多云和雨天;其次,VMD对原始信号进行分解,充分提取集合中的输入因素信息,提高数据质量;SSA优化KELM模型的核函数参数和正则化系数解决其参数选择敏感问题;最后,将不同序列预测值叠加得到最终预测结果。仿真结果表明,所提相似日聚类下PCC-VMD-SSA-KELM模型具有较小的预测误差。 展开更多
关键词 光伏发电 功率预测 变分模态分解 K-均值 麻雀算法 核函数极限学习机
在线阅读 下载PDF
基于VMD和优化SSA-ELM的齿轮箱故障诊断 被引量:3
17
作者 孟博 郇战 +3 位作者 时文雅 余中舟 周靖诺 王佳晖 《郑州大学学报(理学版)》 CAS 北大核心 2024年第2期80-86,共7页
针对传统滤波器对齿轮箱信号去噪不充分和模型识别准确率低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和改进麻雀搜索算法(sparrow search algorithm,SSA)来优化极限学习机(extreme learning machine,ELM)... 针对传统滤波器对齿轮箱信号去噪不充分和模型识别准确率低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和改进麻雀搜索算法(sparrow search algorithm,SSA)来优化极限学习机(extreme learning machine,ELM)的齿轮箱故障诊断模型。通过改进VMD后含噪分量的选取方式,并结合小波包阈值处理对齿轮箱信号进行滤噪,在提取时频域有效特征的基础上,通过Tent混沌映射和引入微分递减因子改进SSA以优化ELM模型进行分类识别。实验结果表明,所提模型对齿轮箱故障工况的分类准确率达到99.50%,在故障诊断精度提升的同时收敛速度更快,验证了模型的可行性。 展开更多
关键词 齿轮箱故障诊断 变分模态分解 小波包去噪 Tent混沌 麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于反向鲸鱼-多隐层极限学习机的电网FDIA检测 被引量:4
18
作者 席磊 王艺晓 +2 位作者 何苗 程琛 田习龙 《中国电力》 CSCD 北大核心 2024年第9期20-31,共12页
针对目前已有的电力信息物理系统虚假数据注入攻击检测方法由于特征表达能力有限,而导致无法精确获取受攻击位置的问题,提出一种基于反向学习鲸鱼优化多隐层极限学习机的虚假数据注入攻击定位检测方法。所提方法不仅将极限学习机拓展为... 针对目前已有的电力信息物理系统虚假数据注入攻击检测方法由于特征表达能力有限,而导致无法精确获取受攻击位置的问题,提出一种基于反向学习鲸鱼优化多隐层极限学习机的虚假数据注入攻击定位检测方法。所提方法不仅将极限学习机拓展为多隐层神经网络,解决其特征表达能力有限的问题,而且引入鲸鱼优化算法对多隐层极限学习机的各隐层神经元个数进行寻优并采用反向学习策略提高其收敛速度和检测精度,以防止随机确定各隐层神经元个数对检测方法的泛化性能和定位检测结果造成影响。通过在不同场景下对IEEE-14和57节点测试系统进行大量实验,验证了所提方法能够通过历史数据自动识别受攻击的系统状态量所对应的精确位置。与其他多种方法相比,所提方法具有更优的精度、召回率和F1值。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 多隐层极限学习机 鲸鱼优化 反向学习
在线阅读 下载PDF
链式回转弹仓区间不确定性动力学模型 被引量:3
19
作者 赵伟 侯保林 +2 位作者 闫少军 鲍丹 林瑜斌 《兵工学报》 EI CAS CSCD 北大核心 2024年第6期1991-2002,共12页
针对具有区间不确定性参数的辨识问题,提出一种基于区间可能度转换模型的区间不确定性参数的双层嵌套辨识(Double-layer Nested Identification,DNI)方法。通过将待辨识参数分为两类,利用DNI方法辨识出第1类确定性参数,再通过基于DNI思... 针对具有区间不确定性参数的辨识问题,提出一种基于区间可能度转换模型的区间不确定性参数的双层嵌套辨识(Double-layer Nested Identification,DNI)方法。通过将待辨识参数分为两类,利用DNI方法辨识出第1类确定性参数,再通过基于DNI思想的区间优化方法优化第2类区间不确定性参数的区间范围;面向嵌套策略类型方法计算量庞大且效率低的问题,选用贝叶斯优化-粒子群优化(Bayesian Optimization-Particle Swarm Optimization,BO-PSO)方法作为内层算法以提高求解效率。DNI方法的内层利用BO-PSO方法计算区间上下界,外层利用改进型布谷鸟搜索(Improved Cuckoo Search,ICS)方法辨识特定参数。为进一步缩短求解时间,提出一种ICS多核极限学习机(ICS-Multiple Kernel-Extreme Learning Machine,ICS-MK-ELM)代理模型,ICS-MK-ELM代理模型克服了人工调节每个核函数超参数的困难,并且模型预测精度明显高于核ELM(Kernel ELM,KELM)和MK-ELM;将DNI方法应用于链式回转弹仓的参数辨识,解决了链式弹仓具有区间不确定性参数的辨识困难的问题,参数辨识结果表明所提DNI方法以及基于DNI思想的区间优化方法具有更高的精度和稳定性。 展开更多
关键词 不确定性 区间可能度 弹仓 参数辨识 多核极限学习机 贝叶斯优化 布谷鸟搜索方法
在线阅读 下载PDF
基于机器学习的工业机器人多目标轨迹规划 被引量:2
20
作者 张学聪 晁永生 +1 位作者 李纯艳 周江林 《现代制造工程》 CSCD 北大核心 2024年第2期31-37,共7页
为满足机器人工作轨迹的多样化需求,以时间、能量及冲击为优化目标提出了一种新的多目标麻雀搜索算法,用于寻找机器人的最优轨迹。首先,通过7次B样条插值方法构造关节空间轨迹,以此确立多目标综合最优轨迹规划模型。其次,采用违反约束... 为满足机器人工作轨迹的多样化需求,以时间、能量及冲击为优化目标提出了一种新的多目标麻雀搜索算法,用于寻找机器人的最优轨迹。首先,通过7次B样条插值方法构造关节空间轨迹,以此确立多目标综合最优轨迹规划模型。其次,采用违反约束度计算、非支配排序以及精英保留来改进麻雀搜索算法,使其能够处理机器人多目标轨迹规划问题。最后,用袋装树分类算法对随机种群内数据进行了筛选,并搭建5层BP神经网络来替代改进多目标麻雀搜索算法中适应度值的数值计算部分,从而提高算法求解效率。通过MATLAB仿真与实验证明了该算法优化所得轨迹的可行性及有效性。 展开更多
关键词 工业机器人 轨迹规划 机器学习 麻雀搜索算法 多目标优化
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部