Level of repair analysis(LORA) is an important method of maintenance decision for establishing systems of operation and maintenance in the equipment development period. Currently, the research on equipment of repair...Level of repair analysis(LORA) is an important method of maintenance decision for establishing systems of operation and maintenance in the equipment development period. Currently, the research on equipment of repair level focuses on economic analysis models which are used to optimize costs and rarely considers the maintenance time required by the implementation of the maintenance program. In fact, as to the system requiring high mission complete success, the maintenance time is an important factor which has a great influence on the availability of equipment systems. Considering the relationship between the maintenance time and the spares stocks level, it is obvious that there are contradictions between the maintenance time and the cost. In order to balance these two factors, it is necessary to build an optimization LORA model. To this end, the maintenance time representing performance characteristic is introduced, and on the basis of spares stocks which is traditionally regarded as a decision variable, a decision variable of repair level is added, and a multi-echelon multiindenture(MEMI) optimization LORA model is built which takes the best cost-effectiveness ratio as the criterion, the expected number of backorder(EBO) as the objective function and the cost as the constraint. Besides, the paper designs a convex programming algorithm of multi-variable for the optimization model, provides solutions to the non-convex objective function and methods for improving the efficiency of the algorithm. The method provided in this paper is proved to be credible and effective according to the numerical example and the simulation result.展开更多
In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for reco...In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for recoverable item control (METRIC) theory. According to the method of systems analysis, the dynamic palm theorem is introduced to establish the prediction model of the spares demand rate, and its main influence factors are analyzed, based on which, the spares support effectiveness evaluation index system is studied, and the system optimization-oriented spares dynamic configuration method for multi-echelon multi-indenture system is proposed. Through the analysis of the optimization algorithm, the layered marginal algorithm is designed to improve the model calculation efficiency. In a given example, the multi-stage spares configuration project during its life cycle is gotten, the research result conforms to the actual status, and it can provide a new way for the spares dynamic optimization.展开更多
A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material d...A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.展开更多
Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equ...Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.展开更多
With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircr...With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.展开更多
In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and ...In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and causes high cost of support. Meanwhile,the inconsistency among depots makes it difficult to manage spare parts. With the development of information technology and transportation, the supply network has become more efficient. In order to further improve the efficiency of supply-support work and the availability of the equipment system, building a system of one centralized depot with multiple depots becomes an appropriate way.In this case, location selection of the depots including centralized depots and multiple depots becomes a top priority in the support system. This paper will focus on the location selection problem of centralized depots considering ILS factors. Unlike the common location selection problem, depots in ILS require a higher service level. Therefore, it becomes desperately necessary to take the high requirement of the mission into account while determining location of depots. Based on this, we raise an optimal depot location model. First, the expected transportation cost is calculated.Next, factors in ILS such as response time, availability and fill rate are analyzed for evaluating positions of open depots. Then, an optimization model of depot location is developed with the minimum expected cost of transportation as objective and ILS factors as constraints. Finally, a numerical case is studied to prove the validity of the model by using the genetic algorithm. Results show that depot location obtained by this model can guarantee the effectiveness and capability of ILS well.展开更多
This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities...This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.展开更多
This paper proposes a joint inspection-based maintenance and spare ordering optimization policy that considers the problem of integrated inspection,preventive maintenance,spare ordering,and quality control for a four-...This paper proposes a joint inspection-based maintenance and spare ordering optimization policy that considers the problem of integrated inspection,preventive maintenance,spare ordering,and quality control for a four-state single-unit manufacturing system.When an inspection detects a minor defect,a second phase inspection is initiated and a regular order is placed.Product quality begins to deteriorate when the system undergoes a severe defect.To counter this,an advanced replacement of the minor defective system is carried out at the Jth second phase inspection.If a severe defect is recognized prior to the Jth inspection,or if system failure occurs,preventive or corrective replacement is executed.The timeliness of replacement depends on the availability of spare.We adopt two modes of ordering:a regular order and an emergency order.Meanwhile,a threshold level is introduced to determine whether an emergency order is preferred even when the regular order is already ordered but has not yet arrived.The optimal joint inspection-based maintenance and spare ordering policy is formulated by minimizing the expected cost per unit time.A simulation algorithm is proposed to obtain the optimal two-phase inspection interval,threshold level and advanced replacement interval.Results from several numerical examples demonstrate that,in terms of the expected cost per unit time,our proposed model is superior to some existing models.展开更多
This paper develops a new replacement policy for a system with multiple spare units.An optimal replacement period is determined by maximizing the mean time to failure of the system.We show that there exists a finite a...This paper develops a new replacement policy for a system with multiple spare units.An optimal replacement period is determined by maximizing the mean time to failure of the system.We show that there exists a finite and unique optimal replacement period T for units with strictly increasing failure rates. We also proof that the optimal repIacement period for a system with spares is decreasing in k. Furthermore, an algorithm is presented to get the optimal replacement period and a numerical example is given to illustrate the result. with strictly展开更多
This paper aims at two problems which exist in most of repairable spare part demand models at present: the exponential distribution as the basic assumption and one typical distribution corresponding to a model. A gene...This paper aims at two problems which exist in most of repairable spare part demand models at present: the exponential distribution as the basic assumption and one typical distribution corresponding to a model. A general repairable spare part demand model built on quasi birth-and-death process is developed. This model assumes that both the operational time of the unit and the maintenance time of the unit follow the continuous time phase type distributions. The first passage time distribution to be out of spares, the first mean time to be out of spares, and an algorithm to get the minimal amount of spares under certain restrictions are obtained. At the end of this paper, a numerical example is given.展开更多
According to the current situation of repair and supply for valuable spare parts in the weapon equipment of the PLA,using the research results of the repairable spare parts inventory theory,an inventory model of the v...According to the current situation of repair and supply for valuable spare parts in the weapon equipment of the PLA,using the research results of the repairable spare parts inventory theory,an inventory model of the valuable spare parts in three-echelon repair and supply system is established by expanding the classical METRIC model and theory,and the genetic algorithm is utilized to solve the model.In the algorithm,the chromosome representation and initial population production,the crossover and mutation operators are designed.By using an example,a simulation analysis is carried out to verify the model's correctness.展开更多
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐...针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。展开更多
基金supported by the National Natural Science Foundation of China(6110413261304148)
文摘Level of repair analysis(LORA) is an important method of maintenance decision for establishing systems of operation and maintenance in the equipment development period. Currently, the research on equipment of repair level focuses on economic analysis models which are used to optimize costs and rarely considers the maintenance time required by the implementation of the maintenance program. In fact, as to the system requiring high mission complete success, the maintenance time is an important factor which has a great influence on the availability of equipment systems. Considering the relationship between the maintenance time and the spares stocks level, it is obvious that there are contradictions between the maintenance time and the cost. In order to balance these two factors, it is necessary to build an optimization LORA model. To this end, the maintenance time representing performance characteristic is introduced, and on the basis of spares stocks which is traditionally regarded as a decision variable, a decision variable of repair level is added, and a multi-echelon multiindenture(MEMI) optimization LORA model is built which takes the best cost-effectiveness ratio as the criterion, the expected number of backorder(EBO) as the objective function and the cost as the constraint. Besides, the paper designs a convex programming algorithm of multi-variable for the optimization model, provides solutions to the non-convex objective function and methods for improving the efficiency of the algorithm. The method provided in this paper is proved to be credible and effective according to the numerical example and the simulation result.
基金supported by the National Defense Pre-research Project in 13th Five-Year(41404050502)the National Defense Science and Technology Fund of the Central Military Commission(2101140)
文摘In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for recoverable item control (METRIC) theory. According to the method of systems analysis, the dynamic palm theorem is introduced to establish the prediction model of the spares demand rate, and its main influence factors are analyzed, based on which, the spares support effectiveness evaluation index system is studied, and the system optimization-oriented spares dynamic configuration method for multi-echelon multi-indenture system is proposed. Through the analysis of the optimization algorithm, the layered marginal algorithm is designed to improve the model calculation efficiency. In a given example, the multi-stage spares configuration project during its life cycle is gotten, the research result conforms to the actual status, and it can provide a new way for the spares dynamic optimization.
基金supported by the National Natural Science Foundation of China (60904002 70971132)
文摘A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.
基金supported by the National Defense Pre-research Project in the 13th Five-Year(41404050502)the National Defense Science and Technology Fund of the Central Military Commission(2101140)
文摘Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.
基金supported by the Fundamental Research Funds for the Central Universities(NS2015072)
文摘With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.
基金supported by the Science Challenge Project(TZ2018007)the National Natural Science Foundation of China(71671009+2 种基金 61871013 61573041 61573043)
文摘In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and causes high cost of support. Meanwhile,the inconsistency among depots makes it difficult to manage spare parts. With the development of information technology and transportation, the supply network has become more efficient. In order to further improve the efficiency of supply-support work and the availability of the equipment system, building a system of one centralized depot with multiple depots becomes an appropriate way.In this case, location selection of the depots including centralized depots and multiple depots becomes a top priority in the support system. This paper will focus on the location selection problem of centralized depots considering ILS factors. Unlike the common location selection problem, depots in ILS require a higher service level. Therefore, it becomes desperately necessary to take the high requirement of the mission into account while determining location of depots. Based on this, we raise an optimal depot location model. First, the expected transportation cost is calculated.Next, factors in ILS such as response time, availability and fill rate are analyzed for evaluating positions of open depots. Then, an optimization model of depot location is developed with the minimum expected cost of transportation as objective and ILS factors as constraints. Finally, a numerical case is studied to prove the validity of the model by using the genetic algorithm. Results show that depot location obtained by this model can guarantee the effectiveness and capability of ILS well.
基金supported by the Naitonal Natural Science Foundation of China(71701038)China Ministry of Education Humanities and Social Sciences Research Youth Fund Project(16YJC630174)+2 种基金the Natural Science Foundation of Hebei Province(G2019501074)the Fundamental Research Funds for the Central Universities(N2123019)the Postgraduate Funding Project of PLA(JY2020B085).
文摘This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.
基金This work was supported by the National Natural Science Foundation of China(71471015)the Social Science Fund Base Project of Beijing(19JDGLA001).
文摘This paper proposes a joint inspection-based maintenance and spare ordering optimization policy that considers the problem of integrated inspection,preventive maintenance,spare ordering,and quality control for a four-state single-unit manufacturing system.When an inspection detects a minor defect,a second phase inspection is initiated and a regular order is placed.Product quality begins to deteriorate when the system undergoes a severe defect.To counter this,an advanced replacement of the minor defective system is carried out at the Jth second phase inspection.If a severe defect is recognized prior to the Jth inspection,or if system failure occurs,preventive or corrective replacement is executed.The timeliness of replacement depends on the availability of spare.We adopt two modes of ordering:a regular order and an emergency order.Meanwhile,a threshold level is introduced to determine whether an emergency order is preferred even when the regular order is already ordered but has not yet arrived.The optimal joint inspection-based maintenance and spare ordering policy is formulated by minimizing the expected cost per unit time.A simulation algorithm is proposed to obtain the optimal two-phase inspection interval,threshold level and advanced replacement interval.Results from several numerical examples demonstrate that,in terms of the expected cost per unit time,our proposed model is superior to some existing models.
文摘This paper develops a new replacement policy for a system with multiple spare units.An optimal replacement period is determined by maximizing the mean time to failure of the system.We show that there exists a finite and unique optimal replacement period T for units with strictly increasing failure rates. We also proof that the optimal repIacement period for a system with spares is decreasing in k. Furthermore, an algorithm is presented to get the optimal replacement period and a numerical example is given to illustrate the result. with strictly
基金Supported by National Defense Foundation of P. R. China (41319060206)
文摘This paper aims at two problems which exist in most of repairable spare part demand models at present: the exponential distribution as the basic assumption and one typical distribution corresponding to a model. A general repairable spare part demand model built on quasi birth-and-death process is developed. This model assumes that both the operational time of the unit and the maintenance time of the unit follow the continuous time phase type distributions. The first passage time distribution to be out of spares, the first mean time to be out of spares, and an algorithm to get the minimal amount of spares under certain restrictions are obtained. At the end of this paper, a numerical example is given.
基金Sponsored by the Foundation of National Defense Research(2008-76320)
文摘According to the current situation of repair and supply for valuable spare parts in the weapon equipment of the PLA,using the research results of the repairable spare parts inventory theory,an inventory model of the valuable spare parts in three-echelon repair and supply system is established by expanding the classical METRIC model and theory,and the genetic algorithm is utilized to solve the model.In the algorithm,the chromosome representation and initial population production,the crossover and mutation operators are designed.By using an example,a simulation analysis is carried out to verify the model's correctness.
文摘针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。