This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter mod...This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter model,STAP performance is then analyzed from the perspective of covariance matrix tapering(CMT).For STAP performance degradation due to array rotation,a determinate compensation method is proposed based on the CMT method.Numerical examples are provided to verify the analysis and the proposed compensation method.展开更多
In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi...In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.展开更多
Tube hydroforming process is a relative new process f or production of structural parts of low weight and high rigidity. The successfu lness of the process depends largely on the a proper selection of loading path w h...Tube hydroforming process is a relative new process f or production of structural parts of low weight and high rigidity. The successfu lness of the process depends largely on the a proper selection of loading path w hich is axial feeding distance as related to the applied internal pressure. Due to the complicated nature of plastic deformation, a optimum loading path which w ill guarantee good hydroformed parts free of winkle and fracture has often to be determined by finite element analysis. In order to save trials and errors, adap tive FEM simulation method has been developed. To effectively apply the adaptive simulation method, we have to know the applicability of the method. In this pap er, a classification of tube hydroforming (THF) processes based on sensitivity to loading parameters has been suggested. Characteristics of the classification have been analyzed in terms of failure mode, dominant loading parameters and th eir working windows. It was discussed that the so called pressure dominant THF p rocess is the most difficult process for both simulation in FEM analysis and pra ctical operation in real manufacturing situation. To effectively find out the op timum loading path for pressure dominant THF process, adaptive FEM simulation st rategies are mostly needed.展开更多
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
Adaptive antenna arrays have been used to mitigate the interference on global navigation satellite system(GNSS) receivers. The performance of interference mitigation depends on the beamforming algorithms adopted by ...Adaptive antenna arrays have been used to mitigate the interference on global navigation satellite system(GNSS) receivers. The performance of interference mitigation depends on the beamforming algorithms adopted by the antenna array. However,the adaptive beamforming will change the array pattern in realtime, which has the potential to introduce phase center biases into the antenna array. For precise applications, these phase biases must be mitigated or compensated because they will bring errors in code phase and carrier phase measurements. A novel adaptive beamforming algorithm is proposed firstly, then the phase bias induced by the proposed algorithm is estimated, and finally a compensation strategy is addressed. Simulations demonstrate that the proposed beamforming algorithm suppresses effectively the strong interference and improves significantly the capturing performance of GNSS signals. Simultaneously, the bias compensation method avoids the loss of the carrier phase lock and reduces the phase measurement errors for GNSS receivers.展开更多
Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of...Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.展开更多
A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and d...A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).展开更多
The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and ...The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and mechanical vibration will be mixed in the original signal, which undoubtedly will affect the prediction accuracy. Therefore, in order to reduce the influence of vibration noise on the prediction accuracy, an adaptive Ensemble Empirical Mode Decomposition(EEMD) threshold filtering algorithm was applied to the original signal in this paper: the output signal was decomposed into a finite number of Intrinsic Mode Functions(IMF) from high frequency to low frequency by using the Empirical Mode Decomposition(EMD) algorithm which could effectively restrain the mode mixing phenomenon; then the demarcation point of high and low frequency IMF components were determined by Continuous Mean Square Error criterion(CMSE), the high frequency IMF components were denoised by wavelet threshold algorithm, and finally the signal was reconstructed. The algorithm was an improved algorithm based on the commonly used wavelet threshold. The two algorithms were used to denoise the original production signal respectively, the adaptive EEMD threshold filtering algorithm had significant advantages in three denoising performance indexes of signal denoising ratio, root mean square error and smoothness. The five field verification tests showed that the average error of field experiment was 1.994% and the maximum relative error was less than 3%. According to the test results, the relative error of the predicted yield per hectare was 2.97%, which was relative to the actual yield. The test results showed that the algorithm could effectively resist noise and improve the accuracy of prediction.展开更多
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n...Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.展开更多
For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and t...For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function.On the basis of the MIT rule,an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function.The updated covariance is fed back into the normal UKF.Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations.The asymptotic properties of this adaptive UKF are discussed.Simulations are conducted using an omni-directional mobile robot,and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods.展开更多
The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-...The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-time multiuser receiver presented in this paper combines 2D-RAKE with parallel interference cancellation (PIC), and the improved parallel interference cancellation methods are given. A novel space-time multiuser detection scheme, 2DRAKE-GPPIC is proposed. This scheme employs smart antenna to suppress unexpected DOA (Direction Of Arrival) signal, uses RAKE receiver to combine different delays of expected signal, and utilizes grouped partial parallel interference cancellation (GPPIC) algorithm to suppress further the interference signal in the main lobe of array antennas. The simulation results reveal that the scheme of space-time multiuser detection presented in this paper has better performance for WCDMA system.展开更多
In the underwater waveguide,the conventional adaptive subspace detector(ASD),derived by using the generalized likelihood ratio test(GLRT)theory,suffers from a significant degradation in detection performance when the ...In the underwater waveguide,the conventional adaptive subspace detector(ASD),derived by using the generalized likelihood ratio test(GLRT)theory,suffers from a significant degradation in detection performance when the samplings of training data are deficient.This paper proposes a dimension-reduced approach to alleviate this problem.The dimension reduction includes two steps:firstly,the full array is divided into several subarrays;secondly,the test data and the training data at each subarray are transformed into the modal domain from the hydrophone domain.Then the modal-domain test data and training data at each subarray are processed to formulate the subarray statistic by using the GLRT theory.The final test statistic of the dimension-reduced ASD(DR-ASD)is obtained by summing all the subarray statistics.After the dimension reduction,the unknown parameters can be estimated more accurately so the DR-ASD achieves a better detection performance than the ASD.In order to achieve the optimal detection performance,the processing gain of the DR-ASD is deduced to choose a proper number of subarrays.Simulation experiments verify the improved detection performance of the DR-ASD compared with the ASD.展开更多
Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal pro...Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal processing.A main challenge of the Gaussian chirplet decomposition is the numerical implementation of the matching pursuit,which is an adaptive signal decomposition scheme,and the challenge remains an open research topic.In this paper,a new optimal time-frequency atom search method based on the adaptive genetic algorithm is proposed,aiming to the low precision problem of the traditional methods.Firstly,a discrete formula of finite length time-frequency atom sequence is derived.Secondly,an algorithm based on the adaptive genetic algorithm is described in detail.Finally,a simulation is carried out,and the result displays its validity and stability.展开更多
It would be well to note that in the absence of clear data about the formation of adaptation systems,or mechanisms of their occurrence,all that is recognized is the realization of the micro evolutionary processes.Ther...It would be well to note that in the absence of clear data about the formation of adaptation systems,or mechanisms of their occurrence,all that is recognized is the realization of the micro evolutionary processes.There is no well-defined connection between information exchange and formation展开更多
基金supported by the National Natural Science Foundation of China(60901056)
文摘This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter model,STAP performance is then analyzed from the perspective of covariance matrix tapering(CMT).For STAP performance degradation due to array rotation,a determinate compensation method is proposed based on the CMT method.Numerical examples are provided to verify the analysis and the proposed compensation method.
文摘In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.
文摘Tube hydroforming process is a relative new process f or production of structural parts of low weight and high rigidity. The successfu lness of the process depends largely on the a proper selection of loading path w hich is axial feeding distance as related to the applied internal pressure. Due to the complicated nature of plastic deformation, a optimum loading path which w ill guarantee good hydroformed parts free of winkle and fracture has often to be determined by finite element analysis. In order to save trials and errors, adap tive FEM simulation method has been developed. To effectively apply the adaptive simulation method, we have to know the applicability of the method. In this pap er, a classification of tube hydroforming (THF) processes based on sensitivity to loading parameters has been suggested. Characteristics of the classification have been analyzed in terms of failure mode, dominant loading parameters and th eir working windows. It was discussed that the so called pressure dominant THF p rocess is the most difficult process for both simulation in FEM analysis and pra ctical operation in real manufacturing situation. To effectively find out the op timum loading path for pressure dominant THF process, adaptive FEM simulation st rategies are mostly needed.
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
基金supported by the National Natural Science Foundation of China(61301094)the Postdoctoral Science Foundation of China(2014M552490)
文摘Adaptive antenna arrays have been used to mitigate the interference on global navigation satellite system(GNSS) receivers. The performance of interference mitigation depends on the beamforming algorithms adopted by the antenna array. However,the adaptive beamforming will change the array pattern in realtime, which has the potential to introduce phase center biases into the antenna array. For precise applications, these phase biases must be mitigated or compensated because they will bring errors in code phase and carrier phase measurements. A novel adaptive beamforming algorithm is proposed firstly, then the phase bias induced by the proposed algorithm is estimated, and finally a compensation strategy is addressed. Simulations demonstrate that the proposed beamforming algorithm suppresses effectively the strong interference and improves significantly the capturing performance of GNSS signals. Simultaneously, the bias compensation method avoids the loss of the carrier phase lock and reduces the phase measurement errors for GNSS receivers.
基金supported by the National Nature Science Foundation of China (60472101)President Award of ChineseAcademy of Sciences(O729031511).
文摘Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.
基金supported by the National Natural Science Foundation of China(609250056110216961501505)
文摘A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).
基金Supported by National Science and Technology Support Program(2014BAD06B04-1-09)China Postdoctoral Fund(2016M601406)Heilongjiang Postdoctoral Fund(LBHZ15024)
文摘The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and mechanical vibration will be mixed in the original signal, which undoubtedly will affect the prediction accuracy. Therefore, in order to reduce the influence of vibration noise on the prediction accuracy, an adaptive Ensemble Empirical Mode Decomposition(EEMD) threshold filtering algorithm was applied to the original signal in this paper: the output signal was decomposed into a finite number of Intrinsic Mode Functions(IMF) from high frequency to low frequency by using the Empirical Mode Decomposition(EMD) algorithm which could effectively restrain the mode mixing phenomenon; then the demarcation point of high and low frequency IMF components were determined by Continuous Mean Square Error criterion(CMSE), the high frequency IMF components were denoised by wavelet threshold algorithm, and finally the signal was reconstructed. The algorithm was an improved algorithm based on the commonly used wavelet threshold. The two algorithms were used to denoise the original production signal respectively, the adaptive EEMD threshold filtering algorithm had significant advantages in three denoising performance indexes of signal denoising ratio, root mean square error and smoothness. The five field verification tests showed that the average error of field experiment was 1.994% and the maximum relative error was less than 3%. According to the test results, the relative error of the predicted yield per hectare was 2.97%, which was relative to the actual yield. The test results showed that the algorithm could effectively resist noise and improve the accuracy of prediction.
基金supported by the National Natural Science Foundation of China(6100115361271415)+2 种基金the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)
文摘Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.
基金Supported by National High Technology Research and Development Program of China(863 Program)Hi-Tech Research and Development Program of China(2003AA421020)
文摘For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function.On the basis of the MIT rule,an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function.The updated covariance is fed back into the normal UKF.Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations.The asymptotic properties of this adaptive UKF are discussed.Simulations are conducted using an omni-directional mobile robot,and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods.
文摘The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-time multiuser receiver presented in this paper combines 2D-RAKE with parallel interference cancellation (PIC), and the improved parallel interference cancellation methods are given. A novel space-time multiuser detection scheme, 2DRAKE-GPPIC is proposed. This scheme employs smart antenna to suppress unexpected DOA (Direction Of Arrival) signal, uses RAKE receiver to combine different delays of expected signal, and utilizes grouped partial parallel interference cancellation (GPPIC) algorithm to suppress further the interference signal in the main lobe of array antennas. The simulation results reveal that the scheme of space-time multiuser detection presented in this paper has better performance for WCDMA system.
基金the National Natural Science Foundation of China (Grant No. 11534009, 11974285) to provide fund for conducting this research
文摘In the underwater waveguide,the conventional adaptive subspace detector(ASD),derived by using the generalized likelihood ratio test(GLRT)theory,suffers from a significant degradation in detection performance when the samplings of training data are deficient.This paper proposes a dimension-reduced approach to alleviate this problem.The dimension reduction includes two steps:firstly,the full array is divided into several subarrays;secondly,the test data and the training data at each subarray are transformed into the modal domain from the hydrophone domain.Then the modal-domain test data and training data at each subarray are processed to formulate the subarray statistic by using the GLRT theory.The final test statistic of the dimension-reduced ASD(DR-ASD)is obtained by summing all the subarray statistics.After the dimension reduction,the unknown parameters can be estimated more accurately so the DR-ASD achieves a better detection performance than the ASD.In order to achieve the optimal detection performance,the processing gain of the DR-ASD is deduced to choose a proper number of subarrays.Simulation experiments verify the improved detection performance of the DR-ASD compared with the ASD.
基金Sponsored by National Nature Science Foundation of China (60575013)
文摘Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal processing.A main challenge of the Gaussian chirplet decomposition is the numerical implementation of the matching pursuit,which is an adaptive signal decomposition scheme,and the challenge remains an open research topic.In this paper,a new optimal time-frequency atom search method based on the adaptive genetic algorithm is proposed,aiming to the low precision problem of the traditional methods.Firstly,a discrete formula of finite length time-frequency atom sequence is derived.Secondly,an algorithm based on the adaptive genetic algorithm is described in detail.Finally,a simulation is carried out,and the result displays its validity and stability.
文摘It would be well to note that in the absence of clear data about the formation of adaptation systems,or mechanisms of their occurrence,all that is recognized is the realization of the micro evolutionary processes.There is no well-defined connection between information exchange and formation