In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and no...In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.展开更多
A new adaptive filtering principle based on capability control and semi-blind method is presented. A new semi-blind space-time equalizer based on constant modulus characteristic and structure risk minimum (SRM) crit...A new adaptive filtering principle based on capability control and semi-blind method is presented. A new semi-blind space-time equalizer based on constant modulus characteristic and structure risk minimum (SRM) criterion is also proposed. The equalizer sufficiently exploits the learning information of communication signals by using the structure information of filter itself through capability control technique. Namely, it maximizes the amount of learning information to im- prove filter tracking performance. Simulations are carried out and the result is compared with that of typical recursive least squares space-time equalizer (RLS-STE) and constant modulus semi-blind space-time equalizer ( CM-SB-STE ). The results show that, even if with insufficient training data, the SRM constant modulus semi-blind space-time equalizer (SCM-SB-STE) keeps good tracking per- formance, showing promises in mobile wireless communications.展开更多
A new method combining space-time preprocessing with multistage Wiener filters(STPMWF)is proposed to improve the performance of space-time adaptive processing(STAP)in nonhomogeneous clutter scenario.The new scheme...A new method combining space-time preprocessing with multistage Wiener filters(STPMWF)is proposed to improve the performance of space-time adaptive processing(STAP)in nonhomogeneous clutter scenario.The new scheme only requires the data from the primary range bin,thus it can suppress discrete interferers efficiently,without calculating the inverse of covariance matrix.Comparing to the original MWF approach,the proposed scheme can be regarded as practical solutions for robust and effective STAP of nonhomogeneous radar data.The theoretical analysis shows that our STPMWF is simple in implementation and fast in convergence.The numeric results by using simulated data exhibit a good agreement with the proposed theory.展开更多
文摘In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(60772056)
文摘A new adaptive filtering principle based on capability control and semi-blind method is presented. A new semi-blind space-time equalizer based on constant modulus characteristic and structure risk minimum (SRM) criterion is also proposed. The equalizer sufficiently exploits the learning information of communication signals by using the structure information of filter itself through capability control technique. Namely, it maximizes the amount of learning information to im- prove filter tracking performance. Simulations are carried out and the result is compared with that of typical recursive least squares space-time equalizer (RLS-STE) and constant modulus semi-blind space-time equalizer ( CM-SB-STE ). The results show that, even if with insufficient training data, the SRM constant modulus semi-blind space-time equalizer (SCM-SB-STE) keeps good tracking per- formance, showing promises in mobile wireless communications.
基金supported by the National Nature Science Foundation of China under Grant No. 60702070
文摘A new method combining space-time preprocessing with multistage Wiener filters(STPMWF)is proposed to improve the performance of space-time adaptive processing(STAP)in nonhomogeneous clutter scenario.The new scheme only requires the data from the primary range bin,thus it can suppress discrete interferers efficiently,without calculating the inverse of covariance matrix.Comparing to the original MWF approach,the proposed scheme can be regarded as practical solutions for robust and effective STAP of nonhomogeneous radar data.The theoretical analysis shows that our STPMWF is simple in implementation and fast in convergence.The numeric results by using simulated data exhibit a good agreement with the proposed theory.