期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A semantic segmentation-based underwater acoustic image transmission framework for cooperative SLAM 被引量:1
1
作者 Jiaxu Li Guangyao Han +1 位作者 Shuai Chang Xiaomei Fu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期339-351,共13页
With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection abil... With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission. 展开更多
关键词 Semantic segmentation sonar image transmission Learning-based compression
在线阅读 下载PDF
RepDNet:A re-parameterization despeckling network for autonomous underwater side-scan sonar imaging with prior-knowledge customized convolution
2
作者 Zhuoyi Li Zhisen Wang +2 位作者 Deshan Chen Tsz Leung Yip Angelo P.Teixeira 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期259-274,共16页
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo... Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency. 展开更多
关键词 Side-scan sonar sonar image despeckling Domain knowledge RE-PARAMETERIZATION
在线阅读 下载PDF
Low complexity MIMO sonar imaging using a virtual sparse linear array
3
作者 Xionghou Liu Chao Sun +2 位作者 Yixin Yang Jie Zhuo Yina Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期370-378,共9页
A multiple-input multiple-output(MIMO) sonar can synthesize a large-aperture virtual uniform linear array(ULA) from a small number of physical elements. However, the large aperture is obtained at the cost of a gre... A multiple-input multiple-output(MIMO) sonar can synthesize a large-aperture virtual uniform linear array(ULA) from a small number of physical elements. However, the large aperture is obtained at the cost of a great number of matched filters with much heavy computation load. To reduce the computation load, a MIMO sonar imaging method using a virtual sparse linear array(SLA) is proposed, which contains the offline and online processing. In the offline processing, the virtual ULA of the MIMO sonar is thinned to a virtual SLA by the simulated annealing algorithm, and matched filters corresponding to inactive virtual elements are removed. In the online processing, outputs of matched filters corresponding to active elements are collected for further multibeam processing and hence, the number of matched filters in the echo processing procedure is effectively reduced. Numerical simulations show that the proposed method can reduce the computation load effectively while obtaining a similar imaging performance as the traditional method. 展开更多
关键词 multiple-input multiple-output(MIMO) sonar simulated annealing sonar imaging sparse arrays
在线阅读 下载PDF
Compensating for intensity loss in a large-aperture MIMO sonar imaging system
4
作者 Xionghou Liu Chao Sun +1 位作者 Yixin Yang Jie Zhuo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期63-71,共9页
To reduce the computation burden of a large-aperture multiple-input multiple-output(MIMO) sonar imaging system,the phase-shift beamformer(PSBF) is used at the cost of bringing the intensity loss(IL).The cause of... To reduce the computation burden of a large-aperture multiple-input multiple-output(MIMO) sonar imaging system,the phase-shift beamformer(PSBF) is used at the cost of bringing the intensity loss(IL).The cause of the IL is analyzed in detail and a variable termed as IL factor is defined to quantify the loss amount.To compensate for the IL,two methods termed as intensity compensation for the PSBF(IC-PSBF) and the hybrid beamforming(HBF),respectively,are proposed.The IC-PSBF uses previously estimated IL factors to compensate for output intensities of all PSBFs;and the HBF applies the IC-PSBF to the center beam region and the shifted-sideband beamformer(SSBF) to the side beam region,respectively.Numerical simulations demonstrate the effectiveness of the two proposed methods. 展开更多
关键词 multiple input multiple output(MIMO)sonar phase-shift beamformer sector-scan sonar shifted-sideband beamformer sonar imaging
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部