Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics...Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.展开更多
The practical application of energetic materials, particularly 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20), is frequently impeded by phase transition challenges. In this study, we propose a novel...The practical application of energetic materials, particularly 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20), is frequently impeded by phase transition challenges. In this study, we propose a novel strategy to enhance the stability of CL-20 by employing a thermo-sensitive polymer,poly(N-isopropylacrylamide)(PNIPAM), to modulate its phase transitions. Our approach involves the use of an in-situ polymerized polydopamine(PDA) shell as a platform for surface grafting through atom transfer radical polymerization, yielding a core-shell structured CL-20@PDA-PNIPAM. Through comprehensive characterization, the successful grafting of PNIPAM is confirmed, significantly enhanced the phase stability of CL-20. Notably, our core-shell structure exhibits a 13℃ increase in phase transition temperature compared to raw CL-20, thereby delaying the ε→a phase transition by over 80 min under combined thermal and solvent conditions. The enhanced stability is attributed to the hydrophobic nature of PNIPAM above its low critical solution temperature in water, which effectively shields the CL-20 crystal. These findings provide new insights into enhancing the stability and safety of energetic materials in complex environments, highlighting the potential of our molecular switch mechanism.展开更多
基金the National Natural Science Foundation of China(Grant No.22075146).
文摘Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.
基金supported by National Natural Science Foundation of China(Grant Nos.U2130207,21875232,12372342)Foundation of President of China Academy of Engineering Physics(Grant Nos.YZJJZQ2023008,YZJJZQ2022006)the Foundation of China Academy of Engineering Physics(Grant Nos.CX20210015,CX20210027)。
文摘The practical application of energetic materials, particularly 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20), is frequently impeded by phase transition challenges. In this study, we propose a novel strategy to enhance the stability of CL-20 by employing a thermo-sensitive polymer,poly(N-isopropylacrylamide)(PNIPAM), to modulate its phase transitions. Our approach involves the use of an in-situ polymerized polydopamine(PDA) shell as a platform for surface grafting through atom transfer radical polymerization, yielding a core-shell structured CL-20@PDA-PNIPAM. Through comprehensive characterization, the successful grafting of PNIPAM is confirmed, significantly enhanced the phase stability of CL-20. Notably, our core-shell structure exhibits a 13℃ increase in phase transition temperature compared to raw CL-20, thereby delaying the ε→a phase transition by over 80 min under combined thermal and solvent conditions. The enhanced stability is attributed to the hydrophobic nature of PNIPAM above its low critical solution temperature in water, which effectively shields the CL-20 crystal. These findings provide new insights into enhancing the stability and safety of energetic materials in complex environments, highlighting the potential of our molecular switch mechanism.