The influence of crystallographic orientation on the void growth in FCC crystals was numerically simulated with 3D crystal plasticity finite element by using a 3D unit cell including a spherical void, and the rate-dep...The influence of crystallographic orientation on the void growth in FCC crystals was numerically simulated with 3D crystal plasticity finite element by using a 3D unit cell including a spherical void, and the rate-dependent crystal plasticity theory was implemented as a user material subroutine. The results of the simulations show that crystallographic orientation has significant influence on the growth behavior of the void. Different active slip systems of the regions around the void cause the discontinuity in lattice rotation around the void, and the corner-like region is formed. In the case of the void located at grain boundary, large heterogeneous deformation occurs between the two grains, and the equivalent plastic deformation along grain boundary near the void in the case of θ=45^o (θ is the angle between grain boundary direction and X-axis) is larger than the others. Large difference of orientation factor of the two grains leads to large equivalent plastic deformation along grain boundary, and the unit cell is more likely to fail by intergranular fracture.展开更多
The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whol...The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.展开更多
The solution diffusion coefficient is a great important intrinsical parameter in crystal growth.On earth,it is impossible to accurately determine the diffusion coefficient since there is nature convection.One of the m...The solution diffusion coefficient is a great important intrinsical parameter in crystal growth.On earth,it is impossible to accurately determine the diffusion coefficient since there is nature convection.One of the marked charateristics of space-crystal growth is to eleminate nature convection,so that purely diffusion-controlled condition of crystal growth could be realized and precise measurement of the diffusion coefficient should be approved.展开更多
As a newly deVeloped method,high temperature in situ observation method can be used to observe directly the interface changes and study the kinetics mechanism during crystal growth.By our newly designed high temperatu...As a newly deVeloped method,high temperature in situ observation method can be used to observe directly the interface changes and study the kinetics mechanism during crystal growth.By our newly designed high temperature in situ observation equiPment,the interface changes of Bi_(12)SiO_(20) crystal growth from melt were studied.展开更多
基金Project(2005CB623706) supported by the Major State Basic Research Development Program of China
文摘The influence of crystallographic orientation on the void growth in FCC crystals was numerically simulated with 3D crystal plasticity finite element by using a 3D unit cell including a spherical void, and the rate-dependent crystal plasticity theory was implemented as a user material subroutine. The results of the simulations show that crystallographic orientation has significant influence on the growth behavior of the void. Different active slip systems of the regions around the void cause the discontinuity in lattice rotation around the void, and the corner-like region is formed. In the case of the void located at grain boundary, large heterogeneous deformation occurs between the two grains, and the equivalent plastic deformation along grain boundary near the void in the case of θ=45^o (θ is the angle between grain boundary direction and X-axis) is larger than the others. Large difference of orientation factor of the two grains leads to large equivalent plastic deformation along grain boundary, and the unit cell is more likely to fail by intergranular fracture.
文摘The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.
文摘The solution diffusion coefficient is a great important intrinsical parameter in crystal growth.On earth,it is impossible to accurately determine the diffusion coefficient since there is nature convection.One of the marked charateristics of space-crystal growth is to eleminate nature convection,so that purely diffusion-controlled condition of crystal growth could be realized and precise measurement of the diffusion coefficient should be approved.
文摘As a newly deVeloped method,high temperature in situ observation method can be used to observe directly the interface changes and study the kinetics mechanism during crystal growth.By our newly designed high temperature in situ observation equiPment,the interface changes of Bi_(12)SiO_(20) crystal growth from melt were studied.