期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
水溶性大豆多糖-铁(Ⅲ)的制备及结构表征 被引量:7
1
作者 高文宏 何瑞雪 万真真 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期127-132,144,共7页
制备了水溶性大豆多糖-铁(Ⅲ)配合物,通过单因素试验和响应面试验建立数学模型来对制备工艺进行优化,并采用紫外-可见光谱和傅里叶红外光谱对产物结构进行了鉴定.结果表明:在最佳工艺条件,即反应时间1.47 h、温度69.8℃、pH8.89、水溶... 制备了水溶性大豆多糖-铁(Ⅲ)配合物,通过单因素试验和响应面试验建立数学模型来对制备工艺进行优化,并采用紫外-可见光谱和傅里叶红外光谱对产物结构进行了鉴定.结果表明:在最佳工艺条件,即反应时间1.47 h、温度69.8℃、pH8.89、水溶性大豆多糖/柠檬酸三钠质量比1.92∶1下,含铁量的模型预测值为31.94%,而对应的实测值为30.65%,说明所建立的水溶性大豆多糖-铁(Ⅲ)响应面模型可以用于指导大豆多糖-铁(Ⅲ)的制备;水溶性大豆多糖(SSPS)与铁(Ⅲ)发生了配合反应,铁以β-FeOOH结构聚合成铁核,SSPS以羧基与铁核配合后得到水溶性大豆多糖-铁(Ⅲ)配合物. 展开更多
关键词 水溶性大豆多糖 铁() 配合物 制备 响应面分析法 工艺优化 结构表征
在线阅读 下载PDF
水溶性大豆多糖-铁(Ⅲ)配合物的制备及其理化性质研究 被引量:7
2
作者 何瑞雪 高文宏 朱思明 《食品工业科技》 CAS CSCD 北大核心 2012年第2期326-330,共5页
研究了水溶性大豆多糖-铁(Ⅲ)配合物的制备工艺,采用响应面法二次回归正交旋转组合方案,分析了水溶性大豆多糖与铁离子的质量比、pH和反应时间对铁离子络合量及络合率的影响。结果表明,其最佳制备工艺为:质量比1.03:1、pH4.76、反应时... 研究了水溶性大豆多糖-铁(Ⅲ)配合物的制备工艺,采用响应面法二次回归正交旋转组合方案,分析了水溶性大豆多糖与铁离子的质量比、pH和反应时间对铁离子络合量及络合率的影响。结果表明,其最佳制备工艺为:质量比1.03:1、pH4.76、反应时间5h。在此条件下,水溶性大豆多糖-铁(Ⅲ)配合物中铁离子的络合量为857.32mg/g,络合率为88.30%,配合物的得率为45.37%。水溶性大豆多糖-铁(Ⅲ)溶于水,在pH1~14范围内不沉淀、不水解。水溶性大豆多糖-铁(Ⅲ)有望开发成强化铁的食品添加剂和营养型口服补铁剂。 展开更多
关键词 水溶性大豆多糖-铁()配合物 响应面法 理化性质
在线阅读 下载PDF
不同分子量水溶性大豆多糖铁(Ⅲ)配合物的合成及其抗氧化活性研究 被引量:5
3
作者 万真真 高文宏 曾新安 《食品工业科技》 CAS CSCD 北大核心 2013年第16期109-113,共5页
研究了超声波协同过氧化氢氧化制备低分子量水溶性大豆多糖,得到了4种不同分子量的水溶性大豆多糖,其分子量分别为93.9、43.4、18.8、9.6ku,并结合超滤从水溶液大豆多糖原液分离出分子量为155、2.6ku的两种多糖。将6种多糖分别与Fe3+反... 研究了超声波协同过氧化氢氧化制备低分子量水溶性大豆多糖,得到了4种不同分子量的水溶性大豆多糖,其分子量分别为93.9、43.4、18.8、9.6ku,并结合超滤从水溶液大豆多糖原液分离出分子量为155、2.6ku的两种多糖。将6种多糖分别与Fe3+反应合成不同分子量的水溶性大豆多糖-Fe(Ⅲ)配合物[SSPS-Fe(Ⅲ)],在还原力、羟基自由基、脂质过氧化、亚硝酸盐自由基四种不同的体系下进行SSPS-Fe(Ⅲ)的体外抗氧化活性研究。结果表明,不同分子量SSPS-Fe(Ⅲ)均有抗氧化活性,其中分子量最大的SSPS-Fe(Ⅲ)的抗氧化活性较弱,而分子量为9.6ku的SSPS-Fe(Ⅲ)整体上具有较强的还原能力、清除羟基自由基和亚硝酸盐自由基和抑制脂质过氧化的能力,表明SSPS-Fe(Ⅲ)的抗氧化能力与其相对分子质量大小有关。 展开更多
关键词 水溶性大豆多糖 铁()配合物 合成 抗氧化活性 低分子量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部