In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the ...In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.展开更多
This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the sys...This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio ε, represented by the ratio of amplitude to depth, and the dispersion ratio μ, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(μ^2). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.展开更多
In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark...In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark-dark soliton wave solutions can be achieved in their limit conditions. We also obtain the different formation regions of combined solitons. Our results show that the intraspecies (interspecies) interaction strengths clearly affect the formation of dar^dark, bright-bright and dark-bright soliton solutions in different regions.展开更多
The Schamel–Korteweg–de Vries equation is investigated by the approach of dynamics.The existences of solitary wave including ω-shape solitary wave and periodic wave are proved via investigating the dynamical behavi...The Schamel–Korteweg–de Vries equation is investigated by the approach of dynamics.The existences of solitary wave including ω-shape solitary wave and periodic wave are proved via investigating the dynamical behaviors with phase space analyses.The sufficient conditions to guarantee the existences of the above solutions in different regions of the parametric space are given.All possible exact explicit parametric representations of the waves are also presented.Along with the details of the analyses,the analytical results are numerically simulated lastly.展开更多
Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equat...Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.展开更多
A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarit...A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarity transformation technique. Constraints for the dispersion coefficient, the cubic and quintic nonlinearities, the external potential, and the gain (loss) coefficient are presented at the same time. Various shapes of analytical solitary-wave solutions which have important applications of physical interest are studied in detail, such as the solutions in Feshbach resonance management with harmonic potentials, Faraday-type waves in the optical lattice potentials, and localized solutions supported by the Gaussian-shaped nonlinearity. The stability analysis of the solutions is discussed numerically.展开更多
By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other ...By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived.展开更多
In this paper, an improved projective approach is used to obtain the variable separation solutions with two arbitrary functions of the (2+l)-dimensional Broek-Kaup equation with variable coefficients (VCBK). Base...In this paper, an improved projective approach is used to obtain the variable separation solutions with two arbitrary functions of the (2+l)-dimensional Broek-Kaup equation with variable coefficients (VCBK). Based on the derived solitary wave solution and using a known chaotic system, some novel chaotic solutions are investigated.展开更多
By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is de...By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we obtain some novel folded localized excitations of the system.展开更多
A system comprised of the nonlinear Schrodinger equation coupled to the Boussinesq equation (S-B equations) which dealing with the stationary propagation of coupled non-linear upper-hybrid and magnetosonic waves in ma...A system comprised of the nonlinear Schrodinger equation coupled to the Boussinesq equation (S-B equations) which dealing with the stationary propagation of coupled non-linear upper-hybrid and magnetosonic waves in magnetized plasma is proposed. To examine its solitary wave solutions, a reduced set of ordinary differential equations are considered by a simple traveling wave transformation. It is then shown that several new solutions (either functional or parametrical) can be obtained systematically, in addition to rederiving all known ones by means of our simple and direct algebra method with the help of the computer algebra system Maple.展开更多
Based on the homogenous balance method and with the help of mathematica, the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and...Based on the homogenous balance method and with the help of mathematica, the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and other exact analytical solution for Whitham-Broer-Kaup equations(WBK) are derived. These solutions contain Fan's, Xie's and Yan's results and other new types of analytical solutions, such as rational function solutions and periodic solutions. The method can also be applied to solve more nonlinear differential equations.展开更多
By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schrodinger equation with variable coefficients,...By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schrodinger equation with variable coefficients, which include bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed solitons, etc. The abundant structure of these solutions are shown by some interesting figures with computer simulation.展开更多
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B...In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.展开更多
An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function...An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained.展开更多
The control of dissipation and amplification of solitary waves in an electrical model of a microtubule is demonstrated.This model consists of a shunt nonlinear resistance–capacitance(J(V)–C(V)) circuit and a series ...The control of dissipation and amplification of solitary waves in an electrical model of a microtubule is demonstrated.This model consists of a shunt nonlinear resistance–capacitance(J(V)–C(V)) circuit and a series resistance–inductance(R–L) circuit. Through linear dispersion analysis, two features of the network are found, that is, low bandpass and bandpass filter characteristics. The effects of the conductance’s parameter λ on the linear dispersion curve are also analyzed. It appears that an increase of λ induces a decrease(an increase) of the width of the bandpass filter for positive(negative) values of λ. By applying the reductive perturbation method, we derive the equation governing the dynamics of the modulated waves in the system. This equation is the well-known nonlinear Schr?dinger equation extended by a linear term proportional to a hybrid parameter σ, i.e., a dissipation or amplification coefficient. Based on this parameter, we successfully demonstrate the hybrid behavior(dissipation and amplification) of the system. The exact and approximate solitary wave solutions of the obtained equation are derived, and the effects of the coefficient σ on the characteristic parameters of these waves are investigated. Using the analytical solutions found, we show numerically that the waves that are propagated throughout the system can be dissipated, amplified, or remain stable depending on the network parameters. These results are not only in agreement with the analytical predictions, but also with the existing experimental results in the literature.展开更多
The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071) and the Natural Science Foundation of Zhejiang Lishui University of China (Grant Nos KZ05004 and KY06024).
文摘In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.
文摘This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio ε, represented by the ratio of amplitude to depth, and the dispersion ratio μ, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(μ^2). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.
基金supported by the Key Program of Chinese Ministry of Education(Grant No.2011015)the Hundred Innovation Talents Supporting Project of Hebei Province of China(Grant No.CPRC014)
文摘In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark-dark soliton wave solutions can be achieved in their limit conditions. We also obtain the different formation regions of combined solitons. Our results show that the intraspecies (interspecies) interaction strengths clearly affect the formation of dar^dark, bright-bright and dark-bright soliton solutions in different regions.
基金supported by the National Natural Science Foundation of China (Grant No.11461022)。
文摘The Schamel–Korteweg–de Vries equation is investigated by the approach of dynamics.The existences of solitary wave including ω-shape solitary wave and periodic wave are proved via investigating the dynamical behaviors with phase space analyses.The sufficient conditions to guarantee the existences of the above solutions in different regions of the parametric space are given.All possible exact explicit parametric representations of the waves are also presented.Along with the details of the analyses,the analytical results are numerically simulated lastly.
文摘Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175158)the Natural Science Foundation of Zhejiang Province of China(Grant No.LY12A04001)
文摘A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarity transformation technique. Constraints for the dispersion coefficient, the cubic and quintic nonlinearities, the external potential, and the gain (loss) coefficient are presented at the same time. Various shapes of analytical solitary-wave solutions which have important applications of physical interest are studied in detail, such as the solutions in Feshbach resonance management with harmonic potentials, Faraday-type waves in the optical lattice potentials, and localized solutions supported by the Gaussian-shaped nonlinearity. The stability analysis of the solutions is discussed numerically.
基金Supported by the Natural Science Foundation of Education Committee of Henan Province(2003110003)Supported by the Natural Science Foundation of Henan Province(0111050200)
文摘By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived.
基金supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Y6100257 and Y6090681)the Natural Science Foundation of Zhejiang Lishui University (Grant Nos. KZ09005 and KY08003)
文摘In this paper, an improved projective approach is used to obtain the variable separation solutions with two arbitrary functions of the (2+l)-dimensional Broek-Kaup equation with variable coefficients (VCBK). Based on the derived solitary wave solution and using a known chaotic system, some novel chaotic solutions are investigated.
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6100257 and Y6110140)
文摘By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we obtain some novel folded localized excitations of the system.
基金Project supported by the Natural Science Foundation of the Education Bureau of Shaanxi Province, China (01JK119)the State Key Program of Basic Research of China (G1998030600).
文摘A system comprised of the nonlinear Schrodinger equation coupled to the Boussinesq equation (S-B equations) which dealing with the stationary propagation of coupled non-linear upper-hybrid and magnetosonic waves in magnetized plasma is proposed. To examine its solitary wave solutions, a reduced set of ordinary differential equations are considered by a simple traveling wave transformation. It is then shown that several new solutions (either functional or parametrical) can be obtained systematically, in addition to rederiving all known ones by means of our simple and direct algebra method with the help of the computer algebra system Maple.
基金Supported by the National Nature Science Foundation of China(10371070)Supported by the Nature Science Foundation of Educational Committee of Liaoning Province(2021401157)
文摘Based on the homogenous balance method and with the help of mathematica, the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and other exact analytical solution for Whitham-Broer-Kaup equations(WBK) are derived. These solutions contain Fan's, Xie's and Yan's results and other new types of analytical solutions, such as rational function solutions and periodic solutions. The method can also be applied to solve more nonlinear differential equations.
基金Project supported by the National Natural Science Foundation of China (Grant No.10735030)Natural Science Foundation of Zhejiang Province of China (Grant No.Y6090592)+1 种基金Natural Science Foundation of Ningbo City (Grant No.2008A610017)K.C.Wong Magna Fund in Ningbo University
文摘By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schrodinger equation with variable coefficients, which include bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed solitons, etc. The abundant structure of these solutions are shown by some interesting figures with computer simulation.
文摘In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.
基金Project supported by the Natural Science Foundation of Henan Province of China (Grant No 0111050200) and the Science Foundation of Henan University of Science and Technology (Grant Nos 2004ZY040 and 2004ZD002).
文摘An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained.
文摘The control of dissipation and amplification of solitary waves in an electrical model of a microtubule is demonstrated.This model consists of a shunt nonlinear resistance–capacitance(J(V)–C(V)) circuit and a series resistance–inductance(R–L) circuit. Through linear dispersion analysis, two features of the network are found, that is, low bandpass and bandpass filter characteristics. The effects of the conductance’s parameter λ on the linear dispersion curve are also analyzed. It appears that an increase of λ induces a decrease(an increase) of the width of the bandpass filter for positive(negative) values of λ. By applying the reductive perturbation method, we derive the equation governing the dynamics of the modulated waves in the system. This equation is the well-known nonlinear Schr?dinger equation extended by a linear term proportional to a hybrid parameter σ, i.e., a dissipation or amplification coefficient. Based on this parameter, we successfully demonstrate the hybrid behavior(dissipation and amplification) of the system. The exact and approximate solitary wave solutions of the obtained equation are derived, and the effects of the coefficient σ on the characteristic parameters of these waves are investigated. Using the analytical solutions found, we show numerically that the waves that are propagated throughout the system can be dissipated, amplified, or remain stable depending on the network parameters. These results are not only in agreement with the analytical predictions, but also with the existing experimental results in the literature.
文摘The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.