Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves...Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.展开更多
The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal over...The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.展开更多
In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fi...In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.展开更多
For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic des...For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.展开更多
Fe3S4 is important magnetic mineral that widely exists in the sediments of lakes and oceans. It can not only instruct reducing environment that contains organic matter and sulfate, but also provide paleomagnetic signa...Fe3S4 is important magnetic mineral that widely exists in the sediments of lakes and oceans. It can not only instruct reducing environment that contains organic matter and sulfate, but also provide paleomagnetic signal for paleoenvironmet research. Simultaneously, as a new type of magnetic material, it causes attention. Because Fe3S4 generally exists as an unstable intermediate, it is stringent in preparation conditions. Although some scholars have conducted on the synthesis experiments of Fe3S4 materials, the research on its stable conditions, formation mechanism and evolution process is not yet depth. Accordingly, defining the stable conditions and revealing evolution law of Fe3S4 nanocrystals have important significance for the determination of environmental conditions and the preparation of pure Fe3S4 nanomaterials.展开更多
A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is perform...A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.展开更多
基金Foundation item: Projects(41172273, 40802079, 51108288) supported by the National Natural Science Foundation of China Project(KLE-TJGE-B1106) supported by the Opening Fund of Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University), China
文摘Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.
基金supported in part by the Scientific Research Project of Heilongjiang Province Education Bureau(12541200)
文摘The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.
基金Project(51008007)supported by the National Natural Science Foundation of ChinaProject(2013318J01100)supported by the Science and Technology Project of Ministry of Communications,China
文摘In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.
文摘For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.
基金Supported by National Natural Science Foundation (Grant No.:40872045 41172047)The Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education (12zxgk01)
文摘Fe3S4 is important magnetic mineral that widely exists in the sediments of lakes and oceans. It can not only instruct reducing environment that contains organic matter and sulfate, but also provide paleomagnetic signal for paleoenvironmet research. Simultaneously, as a new type of magnetic material, it causes attention. Because Fe3S4 generally exists as an unstable intermediate, it is stringent in preparation conditions. Although some scholars have conducted on the synthesis experiments of Fe3S4 materials, the research on its stable conditions, formation mechanism and evolution process is not yet depth. Accordingly, defining the stable conditions and revealing evolution law of Fe3S4 nanocrystals have important significance for the determination of environmental conditions and the preparation of pure Fe3S4 nanomaterials.
文摘A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.