To investigate the in vitro digestion and fermentation properties of soybean oligosaccharides(SBOS)extracted from defatted soybean meal,the changes in monosaccharide composition and molecular mass were analyzed.Subseq...To investigate the in vitro digestion and fermentation properties of soybean oligosaccharides(SBOS)extracted from defatted soybean meal,the changes in monosaccharide composition and molecular mass were analyzed.Subsequently,the effect of SBOS on microbial community structure and metabolites was studied by 16S rRNA gene sequencing and untargeted metabolomics based on liquid chromatography-mass spectrometry.Results showed that SBOS was not easily enzymolyzed during simulated digestion and could reach the large intestine through the digestive system.The significant decrease in the molecular mass of SBOS after in vitro fermentation indicated its utilization by the gut microbiota,which increased the contents of short-chain fatty acids and lactic acid,thereby reducing the pH of the fermentation broth.Moreover,the core community was found to consist of Blautia,Lactobacillaceae,and Pediococcus.SBOS up-regulated beneficial differential metabolites such as myo-inositol,lactose,and glucose,which were closely related to galactose,amino sugar,and nucleotide sugar metabolism.This study will provide a reference for exploring the relationship between the gut microbiota and the metabolites of SBOS,and provide a basis for the development and application of SBOS as an ingredient for functional products.展开更多
In this work, Staphylococcus epidermidis (S. epidermidis) was used to prepare the fermentation broths with antioxidant activity. Through the optimization of the carbon source, three kinds of S. epidermidis fermentatio...In this work, Staphylococcus epidermidis (S. epidermidis) was used to prepare the fermentation broths with antioxidant activity. Through the optimization of the carbon source, three kinds of S. epidermidis fermentation broth were obtained and designated as SFB, Gly-SFB, and Glu-SFB, which were cultivated in beef protein medium and the beef protein medium supplemented with glycerol or glucose, respectively. The differences in antioxidant efficacy of SFB, Gly-SFB and Glu-SFB were investigated by evaluating intracellular ROS fluorescence intensity, SOD enzyme activity and MDA concentration. Gly-SFB and Glu-SFB exhibited a greater capacity to eliminate ROS as compared to that of SFB. The intracellular SOD enzyme activity increased as the concentrations of SFB and Gly-SFB increased. Nevertheless, the intracellular SOD enzyme activity was the highest after the treatment with Glu-SFB at the low concentrations. The intracellular MDA content reached a lower value after the treatment with Gly-SFB and Glu-SFB at lower concentrations, which was opposite to the case after the treatment with SFB. WB indicated that the S. epidermidis fermentation broth regulated the expression of relevant proteins in the Nrf2-Keap1 signaling pathway to exhibit the antioxidant effects. This indicates that the S. epidermidis fermentation broth promotes the expression of relevant proteins in the Nrf2-Keap1 signaling pathway, consequently, antioxidant benefits were exerted. The fermentation broth that were prepared by incorporating glycerol or glucose into the culture medium can augment their antioxidant activity.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten...Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.展开更多
Soybean meal (SBM) is commonly used for livestock feeds, but its application in diets for livestock is limited due to some antinutritional factors. The contents of methionine and lysine of soybean meal were promoted...Soybean meal (SBM) is commonly used for livestock feeds, but its application in diets for livestock is limited due to some antinutritional factors. The contents of methionine and lysine of soybean meal were promoted by Bacillus natto and Leuconostoc mesenteroides fermentation, benefial for the livestock feeds. It was crude protein (CP) 56.8%, methionine 43.56 mg · g^-1, and lysine 74.87 mg · g^-1, cows fed a diet with FSBM milk yield raised 14.2%, the change in the milk protein, the lactose and the dry matter content had also obvious increase. This convenient technique offers helpful exploration for industrialization of soybean meal fermentation.展开更多
The feed additive was composed of six Chinese Herbal(CH)(including Poria, Astragalus, Cork, Orange peel, Hawthorn and Radix), which were fermented by Lactobacillus and used as a feed additive for piglets basal die...The feed additive was composed of six Chinese Herbal(CH)(including Poria, Astragalus, Cork, Orange peel, Hawthorn and Radix), which were fermented by Lactobacillus and used as a feed additive for piglets basal diet. Similar to group of antibiotic and herbal medicine, fermented herbal medicine was additived to basic diet in four trials with eight replications per trial, determining effect on the growth performance, biochemical and immunological indicators. Compared with the control group, the group of fermented herbal compound had higher Average Daily Gain(ADG), higher content of immune globulin M(IgM) and immune globulin A(Ig A)(p〈0.05). There was no significant effect on the indicators of ADG, Average Daily Feed Intake(ADFI) and diarrhea rate(p〉0.05) between groups of antibiotic and fermented herbal were observed; however, the concentrations of Total Protein(TP), Growth Hormone(GH), IgG, IgM and IgA significantly increased(p〈0.05) compared with the control group.展开更多
This study was conducted to investigate the effect of Soybean Peptides(SPs) on ruminal fermentation and microbial diversity in vitro. Four levels of SPs supplements(0, 0.25%, 0.50% and 0.75% dry matter basis) were tes...This study was conducted to investigate the effect of Soybean Peptides(SPs) on ruminal fermentation and microbial diversity in vitro. Four levels of SPs supplements(0, 0.25%, 0.50% and 0.75% dry matter basis) were tested. p H, NH3-N, Neutral Detergent Fiber(NDF), Acid Detergent Fiber(ADF), Dry Matter Digestibility(DMD) and the Total Volatile Fatty Acid(TVFA) were measured at 6, 24, 48 h of in vitro mixed incubation the fluids. Microbial populations were determined at 24 h and Microbial Proteins(MCP) were determined at 24 and 48 h. The gas production after 48 h in vitro incubation presented linear growth(p<0.05) and the highest content was the level of 0.5% SPs(dry matter basis). NH3-N concentration reached the highest concentration with 0.75%(dry matter basis) at 48 h. p H linearly increased(linear, p<0.05) from 6 to 48 h. The digestion of DMD increased with increasing doses of SPs at 24 h. NDF and ADF linearly(p<0.01) decreased by adding SPs. The concentration of TVFA linearly increased(p<0.05) at 6, 24 and 48 h, and reached the highest concentration at the level of 0.75%(dry matter basis). SPs decreased(p<0.05) the molar proportion of acetate and propionate, respectively at 24 and 48 h. Acetat to Propionate ratio(A/P; linear, p<0.05) increased at 48 h, and reached the greatest value at the level of 0.75%(dry matter basis) at 48 h. The populations of rumen Ruminococcus flavefaciens(R. flavefaciens), Ruminococcusalbus(R. albus), Fibrobacter succinogenes(F. succinogenes), Butyrivibrio fibrisolvens(B. fibrisolvens), Streptococcus bovis(S.bovis), Ruminobacter amylophilus(R. amylophilus) and Succinimonas amylolytica(S. amylolytica) were analyzed based on the total rumen bacterial 16 S ribosomal deoxyribonucleic acid(r DNA). The relative abundance of R. flavefaciens and R. albus increased at 24 h, but the relative abundance of F. succinogenes decreased at this time. The incubation of SPs had no effect on the abundance of S. bovis and R. amylophilus. The relative abundance of B. fibrisolvens and S. amylolytica reached the greatest value(p<0.05) at middle doses of SPs inclusion at 24 h. The value of MCPs linearly increased(p<0.05) at 24 and 48 h. These results showed that SPs could improve in vitro fermentation and nutrient digestion of feed substrates, and had the ability to modulate the ruminal fermentation pattern by regulating the composition of functional rumen microbes. Hence, SPs might be a potential feed additive applied in the diets of ruminants.展开更多
In order to solve the citrus peel resource waste problem protopectinase-overproducing strain CD-01 for pectin production and minimize the drawbacks of chemical extraction of pectin, a was isolated from a pit soil dump...In order to solve the citrus peel resource waste problem protopectinase-overproducing strain CD-01 for pectin production and minimize the drawbacks of chemical extraction of pectin, a was isolated from a pit soil dumped with perished orange in Changde City, Hunan Province of China. The strain CD-01 had the same morphology and 28S rRNA gene sequence (FJ184995) as that of Aspergillus niger (ATCC 64028). It was thus identified and named as Aspergillus niger CD-01. The fermentation condition was optimized based on L9(34) orthogonal experimental design and the variances analyses. The results show that the optimal condition for producing pectin is as follows: time 36 h, temperature 35 ℃, pH 5, and urea as the nitrogen source. Under this condition, the pectin yield can reach up to 24.5%. This shows a great potential of Aspergillus niger CD-01 in pectin extraction from citrus.展开更多
The immune regulatory and antioxidant roles of Ganoderma lucidum were investigated using cyclophosphamide(CTX)-induced immunosuppressed mice. Mice were randomly divided into groups: untreated(groupⅠ), immunosuppresse...The immune regulatory and antioxidant roles of Ganoderma lucidum were investigated using cyclophosphamide(CTX)-induced immunosuppressed mice. Mice were randomly divided into groups: untreated(groupⅠ), immunosuppressed(groupⅡ), unfermented G. lucidum polysaccharide(groupⅢ) and fermented G. lucidum polysaccharide(group Ⅳ). After seven consecutive days of treatments, the serum concentration of IL-4, IFN-gamma, IgG, IgA and IgM and the liver activity of GSH-Px, SOD, CAT and MDA enzymes were analyzed. The contents of IL-4, IFN-γ in serum and GSH-Px, SOD and CAT in liver tissues were significantly reduced in groupⅡ compared with those in group I, indicating successful CTX-induced immunosuppression. Interestingly, the results showed that the above immune and antioxidant indicators were significantly improved after G. lucidum polysaccharide treatment, regardless of fermentation. However, fermentation caused changes in polysaccharide structure, which might have a significant impact on immune regulation and antioxidant functions in immunosuppressed mice.展开更多
The present work focuses on the influence of various parameters, i.e., the dosage of cellulase, the inoculum concentration of yeast, the fermentation temperature and the fermentation time, on the alcohol content and s...The present work focuses on the influence of various parameters, i.e., the dosage of cellulase, the inoculum concentration of yeast, the fermentation temperature and the fermentation time, on the alcohol content and sensory evaluation of the low-alcoholic health drink produced from corncob in a yeast-cellulase synchronous fermentation process. The fermentation was performed by inoculating the seed solution (containing corncob powder and yeast) and cellulase into the synchronous saccharification fermentation medium. Single-factor experiments and orthogonal experiments were performed, and the optimal processing conditions were obtained based on the characterizations of alcohol content and sensory evaluation. The results show that the alcohol content and sensory evaluation of the drink can reach 6.1 vol.% and 92, respectively, when the dosage of cellulase, inoculum concentration of yeast, the fermentation temperature and the fermentation time are 15 U/g, 7%, 32℃ and 84 h, respectively.展开更多
Methionine (Met) and lysine (Lys) have been reported as the first two limiting amino acids (AA) for maximum milk yield and milk protein production. Supplying these AA may improve microbial protein synthesis and ...Methionine (Met) and lysine (Lys) have been reported as the first two limiting amino acids (AA) for maximum milk yield and milk protein production. Supplying these AA may improve microbial protein synthesis and therefore improve milk production without adding excess N to the environment. This observation utilized fermented soybean meal (SBM), cottonseed meal (CSM), rapeseed meal (RSM) and corn by Bacillus subtilis 168 and Leuconostoc mesenteroides as core feedstuffs to produce special biological protein feed for dairy cow. The results showed that the milk production, milk protein percentage, milk fat percentage and milk DM percentage of test groups in trial period were significantly more than those of the control group (P〈0.01), the results showed that adding fermenting protein feed in dairy cow diets could significantly improve milk yield, milk protein and milk fat content. The economic benefits of actual application were analyzed, the group of 0.5% was the best compared with the other groups.展开更多
Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small vol...Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.展开更多
This paper mainly dealt with the dissolved oxygen in production of D-ribose by fermentation. The oxygen transfer coefficients of common flask, buffed flask and jar fermentor were determined.
The aim was to examine the biotransformation of chemical compounds during the fermentation of litchi wine.S.bccyanus BV818 was inoculated to litchi juice(Heiye)to initiate the fermentation.Acetic acid decreased dramat...The aim was to examine the biotransformation of chemical compounds during the fermentation of litchi wine.S.bccyanus BV818 was inoculated to litchi juice(Heiye)to initiate the fermentation.Acetic acid decreased dramatically,succinic acid and DL-malic acid increased sharply.Saturated free fatty acid increased,especially the concentration of the free fatty acid with long carbon chain(more than 10 carbons)increased significantly.The unique flavor compounds of fresh litchi including linalool,α-terpineol,β-citronellol and other terpenoids remained in the litchi wine were transformed to other aroma constituents,by which the primary litchi flavor was retained.The wine had a fruity flavor and delicate bouquet and had harmonious sourness and sweetness.The litchi'Heiye'was suitable for being fermented into litchi wine.展开更多
LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemi...LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemical measurement.XRD patterns show that LiNi_(0.5)Mn_(1.5)O_(4)synthesized under various conditions has cubic spinel structure.SEM images exhibit that the particle size increases with increasing calcination temperature and time.Electro chemical test shows that the LiNi_(0.5)Mn_(1.5)O_(4)calcined at 700℃for 24 h delivers up to 143 mA·h/g,and the capacity retains 132 mA·h/g after 30 cycles.展开更多
All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,...All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,the issue of lithium resource availability is selectively overlooked.Considering that the amount of lithium required for all-solidstate LIBs is not sustainable with current lithium resources,another system that also offers the dual advantages of high energy density and safetydall-solid-state sodium-ion batteries(SIBs)dholds significant sustainable advantages and is likely to be the strong contender in the competition for developing next-generation high-energy-density batteries.This article briefly introduces the research status of all-solid-state SIBs,explains the sources of their advantages,and discusses potential approaches to the development of solid sodium-ion conductors,aiming to spark the interest of researchers and attract more attention to the field of all-solid-state SIBs.展开更多
Kinetics of glycerol production by fermentation with osmotolerant yeast Candida krusei was studied. Suppositions of cell negative effect on and glucose inhibition in specific growth rate and glycerol assumption for en...Kinetics of glycerol production by fermentation with osmotolerant yeast Candida krusei was studied. Suppositions of cell negative effect on and glucose inhibition in specific growth rate and glycerol assumption for energy maintenance were made. Based on the suppositions, a set of unstructured kinetic models including cell groWth, glucose consumption and glycerol accumulation rate was proposed. To avoid the significant decrease of produced glyccerol in the latter fermentation stage, the fermentation was suggested to be ended when the concentration ratio of glycerol to glucose is close to 7.展开更多
Optimal glucose feed strategy for glycerol fed-batch fermentation was investigated by Pontryagin’s maximum principle to maximize the final glycerol yield. The problem was solved by a nonsingular control approach by s...Optimal glucose feed strategy for glycerol fed-batch fermentation was investigated by Pontryagin’s maximum principle to maximize the final glycerol yield. The problem was solved by a nonsingular control approach by selecting the culture volume as the control variable, then the general optimal feed profile was numerically determined.展开更多
Culture condition of every phase for fermentation of yeast culture was studied, and its solid and liquid conditions of elaboration were optimized to improve the total counts of living cells. Results showed that microz...Culture condition of every phase for fermentation of yeast culture was studied, and its solid and liquid conditions of elaboration were optimized to improve the total counts of living cells. Results showed that microzyme grew best at 30℃ when solid fermented, and the count of the living cells reached the tiptop with pH 5.5. The count of Candida tropicalis could reach 137.96× 10^9 cfu·g^-1, the count of Saccharomyces cerevisia could reach 134.62× 10^9 cfu·g^-1 the best liquid fermentation condition for cell-wall broken was 50℃ for 28 h, the rate of cell-wall broken could reach 80% at least; the rate of vitamin loss in yeast could be the minimun, the loss rate of vitamin B6 in Candida tropicalis and Saccharomyces cerevisiae was 8.71% and 19.54% respectively, the loss rate of vitamin B2 was 19.39% and 13.18%, respectively, and the loss rate of vitamin B6 was 6.3% and 3.04%, respectively.展开更多
文摘To investigate the in vitro digestion and fermentation properties of soybean oligosaccharides(SBOS)extracted from defatted soybean meal,the changes in monosaccharide composition and molecular mass were analyzed.Subsequently,the effect of SBOS on microbial community structure and metabolites was studied by 16S rRNA gene sequencing and untargeted metabolomics based on liquid chromatography-mass spectrometry.Results showed that SBOS was not easily enzymolyzed during simulated digestion and could reach the large intestine through the digestive system.The significant decrease in the molecular mass of SBOS after in vitro fermentation indicated its utilization by the gut microbiota,which increased the contents of short-chain fatty acids and lactic acid,thereby reducing the pH of the fermentation broth.Moreover,the core community was found to consist of Blautia,Lactobacillaceae,and Pediococcus.SBOS up-regulated beneficial differential metabolites such as myo-inositol,lactose,and glucose,which were closely related to galactose,amino sugar,and nucleotide sugar metabolism.This study will provide a reference for exploring the relationship between the gut microbiota and the metabolites of SBOS,and provide a basis for the development and application of SBOS as an ingredient for functional products.
文摘In this work, Staphylococcus epidermidis (S. epidermidis) was used to prepare the fermentation broths with antioxidant activity. Through the optimization of the carbon source, three kinds of S. epidermidis fermentation broth were obtained and designated as SFB, Gly-SFB, and Glu-SFB, which were cultivated in beef protein medium and the beef protein medium supplemented with glycerol or glucose, respectively. The differences in antioxidant efficacy of SFB, Gly-SFB and Glu-SFB were investigated by evaluating intracellular ROS fluorescence intensity, SOD enzyme activity and MDA concentration. Gly-SFB and Glu-SFB exhibited a greater capacity to eliminate ROS as compared to that of SFB. The intracellular SOD enzyme activity increased as the concentrations of SFB and Gly-SFB increased. Nevertheless, the intracellular SOD enzyme activity was the highest after the treatment with Glu-SFB at the low concentrations. The intracellular MDA content reached a lower value after the treatment with Gly-SFB and Glu-SFB at lower concentrations, which was opposite to the case after the treatment with SFB. WB indicated that the S. epidermidis fermentation broth regulated the expression of relevant proteins in the Nrf2-Keap1 signaling pathway to exhibit the antioxidant effects. This indicates that the S. epidermidis fermentation broth promotes the expression of relevant proteins in the Nrf2-Keap1 signaling pathway, consequently, antioxidant benefits were exerted. The fermentation broth that were prepared by incorporating glycerol or glucose into the culture medium can augment their antioxidant activity.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
基金This work was supported by the National Key R&D Program of China(2022YFB4102000 and 2022YFA1505100)the NSFC(22472038)the Shanghai Science and Technology Innovation Action Plan(22dz1205500).
文摘Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.
基金Supported by Science and Technology Foundation (GB08B401-02)Science and Technology for Youth in Heilongjiang Province (QC07C35)
文摘Soybean meal (SBM) is commonly used for livestock feeds, but its application in diets for livestock is limited due to some antinutritional factors. The contents of methionine and lysine of soybean meal were promoted by Bacillus natto and Leuconostoc mesenteroides fermentation, benefial for the livestock feeds. It was crude protein (CP) 56.8%, methionine 43.56 mg · g^-1, and lysine 74.87 mg · g^-1, cows fed a diet with FSBM milk yield raised 14.2%, the change in the milk protein, the lactose and the dry matter content had also obvious increase. This convenient technique offers helpful exploration for industrialization of soybean meal fermentation.
基金Supported by the Scientific Research Fund of Heilongjiang Provincial Science and Technology Department of Foreign Cooperation Research Project(WB13B101)
文摘The feed additive was composed of six Chinese Herbal(CH)(including Poria, Astragalus, Cork, Orange peel, Hawthorn and Radix), which were fermented by Lactobacillus and used as a feed additive for piglets basal diet. Similar to group of antibiotic and herbal medicine, fermented herbal medicine was additived to basic diet in four trials with eight replications per trial, determining effect on the growth performance, biochemical and immunological indicators. Compared with the control group, the group of fermented herbal compound had higher Average Daily Gain(ADG), higher content of immune globulin M(IgM) and immune globulin A(Ig A)(p〈0.05). There was no significant effect on the indicators of ADG, Average Daily Feed Intake(ADFI) and diarrhea rate(p〉0.05) between groups of antibiotic and fermented herbal were observed; however, the concentrations of Total Protein(TP), Growth Hormone(GH), IgG, IgM and IgA significantly increased(p〈0.05) compared with the control group.
基金the China Agricultural Research System for providing facility and funds for experiment
文摘This study was conducted to investigate the effect of Soybean Peptides(SPs) on ruminal fermentation and microbial diversity in vitro. Four levels of SPs supplements(0, 0.25%, 0.50% and 0.75% dry matter basis) were tested. p H, NH3-N, Neutral Detergent Fiber(NDF), Acid Detergent Fiber(ADF), Dry Matter Digestibility(DMD) and the Total Volatile Fatty Acid(TVFA) were measured at 6, 24, 48 h of in vitro mixed incubation the fluids. Microbial populations were determined at 24 h and Microbial Proteins(MCP) were determined at 24 and 48 h. The gas production after 48 h in vitro incubation presented linear growth(p<0.05) and the highest content was the level of 0.5% SPs(dry matter basis). NH3-N concentration reached the highest concentration with 0.75%(dry matter basis) at 48 h. p H linearly increased(linear, p<0.05) from 6 to 48 h. The digestion of DMD increased with increasing doses of SPs at 24 h. NDF and ADF linearly(p<0.01) decreased by adding SPs. The concentration of TVFA linearly increased(p<0.05) at 6, 24 and 48 h, and reached the highest concentration at the level of 0.75%(dry matter basis). SPs decreased(p<0.05) the molar proportion of acetate and propionate, respectively at 24 and 48 h. Acetat to Propionate ratio(A/P; linear, p<0.05) increased at 48 h, and reached the greatest value at the level of 0.75%(dry matter basis) at 48 h. The populations of rumen Ruminococcus flavefaciens(R. flavefaciens), Ruminococcusalbus(R. albus), Fibrobacter succinogenes(F. succinogenes), Butyrivibrio fibrisolvens(B. fibrisolvens), Streptococcus bovis(S.bovis), Ruminobacter amylophilus(R. amylophilus) and Succinimonas amylolytica(S. amylolytica) were analyzed based on the total rumen bacterial 16 S ribosomal deoxyribonucleic acid(r DNA). The relative abundance of R. flavefaciens and R. albus increased at 24 h, but the relative abundance of F. succinogenes decreased at this time. The incubation of SPs had no effect on the abundance of S. bovis and R. amylophilus. The relative abundance of B. fibrisolvens and S. amylolytica reached the greatest value(p<0.05) at middle doses of SPs inclusion at 24 h. The value of MCPs linearly increased(p<0.05) at 24 and 48 h. These results showed that SPs could improve in vitro fermentation and nutrient digestion of feed substrates, and had the ability to modulate the ruminal fermentation pattern by regulating the composition of functional rumen microbes. Hence, SPs might be a potential feed additive applied in the diets of ruminants.
基金Projects(50621063, 50674101) supported by the National Natural Science Foundation of China
文摘In order to solve the citrus peel resource waste problem protopectinase-overproducing strain CD-01 for pectin production and minimize the drawbacks of chemical extraction of pectin, a was isolated from a pit soil dumped with perished orange in Changde City, Hunan Province of China. The strain CD-01 had the same morphology and 28S rRNA gene sequence (FJ184995) as that of Aspergillus niger (ATCC 64028). It was thus identified and named as Aspergillus niger CD-01. The fermentation condition was optimized based on L9(34) orthogonal experimental design and the variances analyses. The results show that the optimal condition for producing pectin is as follows: time 36 h, temperature 35 ℃, pH 5, and urea as the nitrogen source. Under this condition, the pectin yield can reach up to 24.5%. This shows a great potential of Aspergillus niger CD-01 in pectin extraction from citrus.
基金Supported by the "12th Five-year Plan" National Science and Technology(2011BAD34B01)
文摘The immune regulatory and antioxidant roles of Ganoderma lucidum were investigated using cyclophosphamide(CTX)-induced immunosuppressed mice. Mice were randomly divided into groups: untreated(groupⅠ), immunosuppressed(groupⅡ), unfermented G. lucidum polysaccharide(groupⅢ) and fermented G. lucidum polysaccharide(group Ⅳ). After seven consecutive days of treatments, the serum concentration of IL-4, IFN-gamma, IgG, IgA and IgM and the liver activity of GSH-Px, SOD, CAT and MDA enzymes were analyzed. The contents of IL-4, IFN-γ in serum and GSH-Px, SOD and CAT in liver tissues were significantly reduced in groupⅡ compared with those in group I, indicating successful CTX-induced immunosuppression. Interestingly, the results showed that the above immune and antioxidant indicators were significantly improved after G. lucidum polysaccharide treatment, regardless of fermentation. However, fermentation caused changes in polysaccharide structure, which might have a significant impact on immune regulation and antioxidant functions in immunosuppressed mice.
基金Project(17A192)supported by the Education Department of Hunan Province,China
文摘The present work focuses on the influence of various parameters, i.e., the dosage of cellulase, the inoculum concentration of yeast, the fermentation temperature and the fermentation time, on the alcohol content and sensory evaluation of the low-alcoholic health drink produced from corncob in a yeast-cellulase synchronous fermentation process. The fermentation was performed by inoculating the seed solution (containing corncob powder and yeast) and cellulase into the synchronous saccharification fermentation medium. Single-factor experiments and orthogonal experiments were performed, and the optimal processing conditions were obtained based on the characterizations of alcohol content and sensory evaluation. The results show that the alcohol content and sensory evaluation of the drink can reach 6.1 vol.% and 92, respectively, when the dosage of cellulase, inoculum concentration of yeast, the fermentation temperature and the fermentation time are 15 U/g, 7%, 32℃ and 84 h, respectively.
基金Supported by"863"Project of Ministry of Science and Technology of China(2013AA102504-03)
文摘Methionine (Met) and lysine (Lys) have been reported as the first two limiting amino acids (AA) for maximum milk yield and milk protein production. Supplying these AA may improve microbial protein synthesis and therefore improve milk production without adding excess N to the environment. This observation utilized fermented soybean meal (SBM), cottonseed meal (CSM), rapeseed meal (RSM) and corn by Bacillus subtilis 168 and Leuconostoc mesenteroides as core feedstuffs to produce special biological protein feed for dairy cow. The results showed that the milk production, milk protein percentage, milk fat percentage and milk DM percentage of test groups in trial period were significantly more than those of the control group (P〈0.01), the results showed that adding fermenting protein feed in dairy cow diets could significantly improve milk yield, milk protein and milk fat content. The economic benefits of actual application were analyzed, the group of 0.5% was the best compared with the other groups.
基金Project(202045007) supported by the Start-up Funds for Outstanding Talents in Central South University,China。
文摘Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.
文摘This paper mainly dealt with the dissolved oxygen in production of D-ribose by fermentation. The oxygen transfer coefficients of common flask, buffed flask and jar fermentor were determined.
基金Supported by the Talent Introduction Project of Guangdong University of Petrochemical Technology(513036)the Innovation Project of the High Education Institutions of Guangdong Province(650465)。
文摘The aim was to examine the biotransformation of chemical compounds during the fermentation of litchi wine.S.bccyanus BV818 was inoculated to litchi juice(Heiye)to initiate the fermentation.Acetic acid decreased dramatically,succinic acid and DL-malic acid increased sharply.Saturated free fatty acid increased,especially the concentration of the free fatty acid with long carbon chain(more than 10 carbons)increased significantly.The unique flavor compounds of fresh litchi including linalool,α-terpineol,β-citronellol and other terpenoids remained in the litchi wine were transformed to other aroma constituents,by which the primary litchi flavor was retained.The wine had a fruity flavor and delicate bouquet and had harmonious sourness and sweetness.The litchi'Heiye'was suitable for being fermented into litchi wine.
基金Project(76600)supported by Postdoctoral Science Foundation of Central South University
文摘LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemical measurement.XRD patterns show that LiNi_(0.5)Mn_(1.5)O_(4)synthesized under various conditions has cubic spinel structure.SEM images exhibit that the particle size increases with increasing calcination temperature and time.Electro chemical test shows that the LiNi_(0.5)Mn_(1.5)O_(4)calcined at 700℃for 24 h delivers up to 143 mA·h/g,and the capacity retains 132 mA·h/g after 30 cycles.
基金the support of the Grant-in-Aid for JSPS Research Fellow.
文摘All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,the issue of lithium resource availability is selectively overlooked.Considering that the amount of lithium required for all-solidstate LIBs is not sustainable with current lithium resources,another system that also offers the dual advantages of high energy density and safetydall-solid-state sodium-ion batteries(SIBs)dholds significant sustainable advantages and is likely to be the strong contender in the competition for developing next-generation high-energy-density batteries.This article briefly introduces the research status of all-solid-state SIBs,explains the sources of their advantages,and discusses potential approaches to the development of solid sodium-ion conductors,aiming to spark the interest of researchers and attract more attention to the field of all-solid-state SIBs.
基金From National Ninth Five Years Project (NO. 96-03-03-03A).
文摘Kinetics of glycerol production by fermentation with osmotolerant yeast Candida krusei was studied. Suppositions of cell negative effect on and glucose inhibition in specific growth rate and glycerol assumption for energy maintenance were made. Based on the suppositions, a set of unstructured kinetic models including cell groWth, glucose consumption and glycerol accumulation rate was proposed. To avoid the significant decrease of produced glyccerol in the latter fermentation stage, the fermentation was suggested to be ended when the concentration ratio of glycerol to glucose is close to 7.
基金From National Ninth Five Years Project (NO. 96-03-03-03A).
文摘Optimal glucose feed strategy for glycerol fed-batch fermentation was investigated by Pontryagin’s maximum principle to maximize the final glycerol yield. The problem was solved by a nonsingular control approach by selecting the culture volume as the control variable, then the general optimal feed profile was numerically determined.
基金Program of Harbin Tackle Key Problem(2004AA6BNO20)
文摘Culture condition of every phase for fermentation of yeast culture was studied, and its solid and liquid conditions of elaboration were optimized to improve the total counts of living cells. Results showed that microzyme grew best at 30℃ when solid fermented, and the count of the living cells reached the tiptop with pH 5.5. The count of Candida tropicalis could reach 137.96× 10^9 cfu·g^-1, the count of Saccharomyces cerevisia could reach 134.62× 10^9 cfu·g^-1 the best liquid fermentation condition for cell-wall broken was 50℃ for 28 h, the rate of cell-wall broken could reach 80% at least; the rate of vitamin loss in yeast could be the minimun, the loss rate of vitamin B6 in Candida tropicalis and Saccharomyces cerevisiae was 8.71% and 19.54% respectively, the loss rate of vitamin B2 was 19.39% and 13.18%, respectively, and the loss rate of vitamin B6 was 6.3% and 3.04%, respectively.