Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi...Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.展开更多
Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain...Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain. Dielectric relaxation study and electro-optical measurements are carried out with the classical SSFLC geometry. The field-induced phase transitions are studied and the(E,T) phase diagram is established.展开更多
We report our recent progress on the QCD phase structure.We explore the properties of quark–gluon matter in the improved Polyakov–Nambu–Jona–Lasinio(PNJL)model by introducing a chemical potential-dependent Polyako...We report our recent progress on the QCD phase structure.We explore the properties of quark–gluon matter in the improved Polyakov–Nambu–Jona–Lasinio(PNJL)model by introducing a chemical potential-dependent Polyakov loop potential.This treatment effectively reflects the quantum backreaction of matter sector to glue sector at nonzero chemical potential.Compared with the original PNJL model,a superiority of the improved PNJL model is that it can effectively describe the confinement–deconfinement transition at low temperature and high density.And the QCD phase diagram will be modified to a certain degree if the strength of the quantum backreaction of matter sector to glue sector is strong.One evident variation is that the region of quarkyonic phase will be greatly reduced in the improved PNJL model.This means that the modification to the Polyakov loop potential with the chemical potential dependence is possibly a significant improvement in exploring the full QCD phase structure.展开更多
It is crucially important to study different synchronous regimes in coupled neurons because different regimes may correspond to different cognitive and pathological states. In this paper, phase synchronization and its...It is crucially important to study different synchronous regimes in coupled neurons because different regimes may correspond to different cognitive and pathological states. In this paper, phase synchronization and its transitions are discussed by means of theoretical and numerical analyses. In two coupled modified Morris-Lecar neurons with a gap junction, we show that the occurrence of phase synchronization can be investigated from the dynamics of phase equation, and the analytical synchronization condition is derived. By defining the phase of spike and burst, the transitions from burst synchronization to spike synchronization and then toward nearly complete synchronization can be identified by bifurcation diagrams, the mean frequency difference and time series of neurons. The simulation results suggest that the synchronization of bursting activity is a multi-time-scale phenomenon and the phase synchronization deduced by the phase equation is actually spike synchronization.展开更多
The dynamic phase transition properties for ferroelectric nanotube under a spin-1/2 transverse Ising model are studied under the effective field theory(EFT)with correlations.The temperature effects on the pseudo-spin ...The dynamic phase transition properties for ferroelectric nanotube under a spin-1/2 transverse Ising model are studied under the effective field theory(EFT)with correlations.The temperature effects on the pseudo-spin systems are unveiled in three-dimensional(3-D)and two-dimensional(2-D)phase diagrams.Moreover,the dynamic behaviors of exchange interactions on the 3-D and 2-D phase transitions under high temperature are exhibited.The results present that it is hard to obtain pure ferroelectric phase under high temperature;that is,the vibration of orderly pseudo-spins cannot be eliminated completely.展开更多
Recent progress on nuclear liquid gas phase transition (LGPT) has been reviewed, especially for the signals of LGPT in heavy ion collisions. These signals include the power-law charge distribution, cluster emission ra...Recent progress on nuclear liquid gas phase transition (LGPT) has been reviewed, especially for the signals of LGPT in heavy ion collisions. These signals include the power-law charge distribution, cluster emission rate, nuclear Zipf law, bimodality, the largest fluctuation of the fragments, Δ-scaling, caloric curve, phase coexis- tence diagram, critical temperature, critical exponent analysis, negative specific heat capacity and spinodal instability etc. The systematic works of the authors on experimental and theoretical LGPT are also introduced.展开更多
Progress in the research on phase transitions during Li+ extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomen...Progress in the research on phase transitions during Li+ extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries. Physical phenomena such as phase transitions (and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li+ insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties.展开更多
The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in associatio...The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Snl3 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1 ) divided by temperature (T), 1/TI T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-△/kBT) with a large gap △ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.展开更多
A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffr...A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffraction, chemical analysis, and elementary analysis. It is triclinic, the space group is P-1 and Z = 2. The lattice potential energy of the title complex is calculated to be UpoT (CsCd(s))=978.83 kJ.mol^-1 from crystallographic data. Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K. The temperature, molar enthalpy, and entropy of the phase transition for the complex are determined to be 307.3±0.15 K, 10.15±0.23 kJ.mol^-1, and 33.054-0.78 J.K^-1.mol^-1 respectively for the endothermic peak. Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method. Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.展开更多
As a new member in two-dimensional materials family,transition metal carbides(TMCs)have many excellent properties,such as chemical stability,in-plane anisotropy,high conductivity and flexibility,and remarkable energy ...As a new member in two-dimensional materials family,transition metal carbides(TMCs)have many excellent properties,such as chemical stability,in-plane anisotropy,high conductivity and flexibility,and remarkable energy conversation efficiency,which predispose them for promising applications as transparent electrode,flexible electronics,broadband photodetectors and battery electrodes.However,up to now,their device applications are in the early stage,especially because their controllable synthesis is still a great challenge.This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure,property,synthesis and applicability of TMCs.Finally,the current challenges and future perspectives are outlined for the application of 2D TMCs.展开更多
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.
文摘Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain. Dielectric relaxation study and electro-optical measurements are carried out with the classical SSFLC geometry. The field-induced phase transitions are studied and the(E,T) phase diagram is established.
基金supported by the National Natural Science Foundation of China(No.11305121)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130201120046)+1 种基金the Natural Science Basic Research Plan in Shanxi Province of China(No.2014JQ1012)the Fundamental Research Funds for the Central Universities
文摘We report our recent progress on the QCD phase structure.We explore the properties of quark–gluon matter in the improved Polyakov–Nambu–Jona–Lasinio(PNJL)model by introducing a chemical potential-dependent Polyakov loop potential.This treatment effectively reflects the quantum backreaction of matter sector to glue sector at nonzero chemical potential.Compared with the original PNJL model,a superiority of the improved PNJL model is that it can effectively describe the confinement–deconfinement transition at low temperature and high density.And the QCD phase diagram will be modified to a certain degree if the strength of the quantum backreaction of matter sector to glue sector is strong.One evident variation is that the region of quarkyonic phase will be greatly reduced in the improved PNJL model.This means that the modification to the Polyakov loop potential with the chemical potential dependence is possibly a significant improvement in exploring the full QCD phase structure.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10872014 and 10802012)the Development Foundation of Science of Nanjing University of Science and Technology (Grant No.XKF09036)
文摘It is crucially important to study different synchronous regimes in coupled neurons because different regimes may correspond to different cognitive and pathological states. In this paper, phase synchronization and its transitions are discussed by means of theoretical and numerical analyses. In two coupled modified Morris-Lecar neurons with a gap junction, we show that the occurrence of phase synchronization can be investigated from the dynamics of phase equation, and the analytical synchronization condition is derived. By defining the phase of spike and burst, the transitions from burst synchronization to spike synchronization and then toward nearly complete synchronization can be identified by bifurcation diagrams, the mean frequency difference and time series of neurons. The simulation results suggest that the synchronization of bursting activity is a multi-time-scale phenomenon and the phase synchronization deduced by the phase equation is actually spike synchronization.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFE0120500)the National Natural Science Foundation of China(Grant No.51972129)+3 种基金the South Xinjiang Innovation and Development Program of Key Industries of Xinjiang Production and Construction Corps(Grant No.2020DB002)the Fundamental Research Funds for the Central Universities,China(Grant Nos.HUST 2018KFYYXJJ051 and 2019KFYXMBZ076)Shenzhen Fundamental Research Fund(Grant No.JCYJ20190813172609404)the Hubei“Chu-Tian Young Scholar”Program。
文摘The dynamic phase transition properties for ferroelectric nanotube under a spin-1/2 transverse Ising model are studied under the effective field theory(EFT)with correlations.The temperature effects on the pseudo-spin systems are unveiled in three-dimensional(3-D)and two-dimensional(2-D)phase diagrams.Moreover,the dynamic behaviors of exchange interactions on the 3-D and 2-D phase transitions under high temperature are exhibited.The results present that it is hard to obtain pure ferroelectric phase under high temperature;that is,the vibration of orderly pseudo-spins cannot be eliminated completely.
基金the National Natural Science Foundation of China for the Distinguished Young Scholar (No. 19725521) the National Natural Science Foundation of China (No. 19705012)+1 种基金 the Science and Technology Development Foundation of Shanghai (No.97QA14038)the Major State Basic Research Development Program of China (No. G200077400)
文摘Recent progress on nuclear liquid gas phase transition (LGPT) has been reviewed, especially for the signals of LGPT in heavy ion collisions. These signals include the power-law charge distribution, cluster emission rate, nuclear Zipf law, bimodality, the largest fluctuation of the fragments, Δ-scaling, caloric curve, phase coexis- tence diagram, critical temperature, critical exponent analysis, negative specific heat capacity and spinodal instability etc. The systematic works of the authors on experimental and theoretical LGPT are also introduced.
基金supported by the National High Technology Research and Development Program of China(Grant No.2013AA050906)the National Natural Science Foundation of China(Grant Nos.51272175 and 21301127)
文摘Progress in the research on phase transitions during Li+ extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries. Physical phenomena such as phase transitions (and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li+ insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674377 and 11634015)the National Key R&D Program of China(Grant Nos.2017YFA0302904 and 2016YFA0300502)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020200)supported by the Youth Innovation Promotion Association of CAS
文摘The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Snl3 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1 ) divided by temperature (T), 1/TI T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-△/kBT) with a large gap △ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.
基金Project supported by the National Natural Science Foundations of China (Grant Nos. 20673050 and 20973089)
文摘A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffraction, chemical analysis, and elementary analysis. It is triclinic, the space group is P-1 and Z = 2. The lattice potential energy of the title complex is calculated to be UpoT (CsCd(s))=978.83 kJ.mol^-1 from crystallographic data. Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K. The temperature, molar enthalpy, and entropy of the phase transition for the complex are determined to be 307.3±0.15 K, 10.15±0.23 kJ.mol^-1, and 33.054-0.78 J.K^-1.mol^-1 respectively for the endothermic peak. Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method. Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.
基金This research was supported by grants from by the National Natural Science Foundation of China(52002254)Sichuan Science and Technology Program(2020YJ0262,2021YFH0127)+2 种基金Chunhui plan of Ministry of Education of China,Fundamental Research Funds for the Central Universities,China(YJ201893)State Key Lab of Advanced Metals and Materials,China(Grant No.2019-Z03)the Danish National Research Foundation and EU H2020RISE 2016-MNR4S Cell project.
文摘As a new member in two-dimensional materials family,transition metal carbides(TMCs)have many excellent properties,such as chemical stability,in-plane anisotropy,high conductivity and flexibility,and remarkable energy conversation efficiency,which predispose them for promising applications as transparent electrode,flexible electronics,broadband photodetectors and battery electrodes.However,up to now,their device applications are in the early stage,especially because their controllable synthesis is still a great challenge.This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure,property,synthesis and applicability of TMCs.Finally,the current challenges and future perspectives are outlined for the application of 2D TMCs.