该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2025年2月1日至2025年3月31日上线的锂电池研究论文,共有6847篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元的掺杂改性和表...该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2025年2月1日至2025年3月31日上线的锂电池研究论文,共有6847篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元的掺杂改性和表面包覆,以及其在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极材料制备优化以及黏结剂的制备以缓冲体积变化、复合金属锂负极的制备以及界面构筑与调控。固态电解质的研究主要包括硫化物固态电解质、氯化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计也有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛注意。电池工艺技术方面的研究包括厚电极制备技术等。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作侧重于固体电解质钟的离子输运行为研究。展开更多
为降低Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)电解质膜与锂金属负极之间的界面阻抗,抑制LATP与锂金属之间的副反应以及锂枝晶的生长,提高LATP电解质膜的性能,使用PVDF对LATP基电解质膜界面进行修饰,并研究其电化学性能。将LATP陶瓷...为降低Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)电解质膜与锂金属负极之间的界面阻抗,抑制LATP与锂金属之间的副反应以及锂枝晶的生长,提高LATP电解质膜的性能,使用PVDF对LATP基电解质膜界面进行修饰,并研究其电化学性能。将LATP陶瓷粉末与聚氧化乙烯、LIFSI混合均匀后浇筑成膜,将PVDF溶液均匀涂覆在电解质膜表面,干燥得到修饰后的电解质膜。通过电化学实验、充放电实验、表面表征等方法,研究PVDF修饰后电解质膜的性能。结果显示,PVDF影响了LATP的晶体结构,优化了锂离子迁移通道。修饰后电解质膜的室温离子电导率提升,室温下电化学窗口由3.74 V增加到4.10 V,锂离子迁移数由0.915提升到0.978,组装锂金属对称电池在0.05 m A/cm^(2)电流密度下的循环时间从45 h提升到280 h以上,有效抑制了锂枝晶的生长,提升了电解质膜与锂金属界面稳定性。在电流密度0.025、0.050、0.100、0.200 m A/cm^(2)下的极化电压分别为27、60、110、220 m V。在LFP|SSCEs-1|Li全电池中循环超过25圈后形成了良好的SEI界面。从第25圈到第100圈容量保持率为87%,库仑效率始终保持在95%以上。PVDF修饰层提升了LATP电解质膜的电化学性能以及和锂金属界面的稳定性,对全固态锂电池的应用具有积极意义。展开更多
文摘该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2025年2月1日至2025年3月31日上线的锂电池研究论文,共有6847篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元的掺杂改性和表面包覆,以及其在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极材料制备优化以及黏结剂的制备以缓冲体积变化、复合金属锂负极的制备以及界面构筑与调控。固态电解质的研究主要包括硫化物固态电解质、氯化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计也有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛注意。电池工艺技术方面的研究包括厚电极制备技术等。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作侧重于固体电解质钟的离子输运行为研究。
文摘为降低Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)电解质膜与锂金属负极之间的界面阻抗,抑制LATP与锂金属之间的副反应以及锂枝晶的生长,提高LATP电解质膜的性能,使用PVDF对LATP基电解质膜界面进行修饰,并研究其电化学性能。将LATP陶瓷粉末与聚氧化乙烯、LIFSI混合均匀后浇筑成膜,将PVDF溶液均匀涂覆在电解质膜表面,干燥得到修饰后的电解质膜。通过电化学实验、充放电实验、表面表征等方法,研究PVDF修饰后电解质膜的性能。结果显示,PVDF影响了LATP的晶体结构,优化了锂离子迁移通道。修饰后电解质膜的室温离子电导率提升,室温下电化学窗口由3.74 V增加到4.10 V,锂离子迁移数由0.915提升到0.978,组装锂金属对称电池在0.05 m A/cm^(2)电流密度下的循环时间从45 h提升到280 h以上,有效抑制了锂枝晶的生长,提升了电解质膜与锂金属界面稳定性。在电流密度0.025、0.050、0.100、0.200 m A/cm^(2)下的极化电压分别为27、60、110、220 m V。在LFP|SSCEs-1|Li全电池中循环超过25圈后形成了良好的SEI界面。从第25圈到第100圈容量保持率为87%,库仑效率始终保持在95%以上。PVDF修饰层提升了LATP电解质膜的电化学性能以及和锂金属界面的稳定性,对全固态锂电池的应用具有积极意义。