Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea...Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea XS-350 were investigated via systematic experimentation over a wide range of strain rates(0.001-7000 s^-1)by using an MTS,Instron VHS,and split-Hopkinson bars.The stress-strain behavior of polyurea was obtained for various strain rates,and the effects of strain rate on the primary mechanical properties were analyzed.Additionally,a modified rate-dependent constitutive model is proposed based on the nine-parameter Mooney-Rivlin model.The results show that the stress-strain curves can be divided into three distinct regions:the linear-elastic stage,the highly elastic stage,and an approximate linear region terminating in fracture.The mechanical properties of the polyurea material were found to be highly dependent on the strain rate.Furthermore,a comparison between model predictions and the experimental stress-strain curves demonstrated that the proposed model can characterize the mechanical properties of polyurea over a wide range of strain rates.展开更多
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio...When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.展开更多
The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the...The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.展开更多
基金the Provincial Basic Research Program of China(NO.2016209A003,NO·2016602B003)
文摘Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea XS-350 were investigated via systematic experimentation over a wide range of strain rates(0.001-7000 s^-1)by using an MTS,Instron VHS,and split-Hopkinson bars.The stress-strain behavior of polyurea was obtained for various strain rates,and the effects of strain rate on the primary mechanical properties were analyzed.Additionally,a modified rate-dependent constitutive model is proposed based on the nine-parameter Mooney-Rivlin model.The results show that the stress-strain curves can be divided into three distinct regions:the linear-elastic stage,the highly elastic stage,and an approximate linear region terminating in fracture.The mechanical properties of the polyurea material were found to be highly dependent on the strain rate.Furthermore,a comparison between model predictions and the experimental stress-strain curves demonstrated that the proposed model can characterize the mechanical properties of polyurea over a wide range of strain rates.
基金Projects(51878190,51779031,51678170)supported by the National Natural Science Foundation of China。
文摘When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.
基金supported by the National Natural Science Foundation of China(Grant No.11872215)the National Defense Basic Scientific Research program of China(Grant No.JCKYS2019209C001)the Fundamental Strengthening Program of the Military Science and Technology Commission Technical Field Foundation(2020-JCJQ-JJ-403).
文摘The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.